Some Normal Approximations for Renewal Function of Large Weibull Shape Parameter
暂无分享,去创建一个
[1] N. I. Robinson,et al. Renewal functions as series , 1997 .
[2] Semih Bilgen,et al. Solution of the volterra equation of renewal theory with the galerkin technique using cubic splines , 1984 .
[3] W. Chan,et al. Estimation of the Weibull renewal function , 1988 .
[4] Richard J. Bagby. Calculating normal probabilities , 1995 .
[5] M. Chaudhry. On Computations of the Mean and Variance of the Number of Renewals: a Unified Approach , 1995 .
[6] S. From. SOME NEW APPROXIMATIONS FOR THE RENEWAL FUNCTION , 2001 .
[7] Z. A. Lomnicki. A note on the Weibull Renewal Process , 1966 .
[8] Malcolm R Leadbetter,et al. On the Renewal Function for the Weibull Distribution , 1963 .
[9] A. G. Constantine,et al. The Weibull renewal function for moderate to large arguments , 1997 .
[10] D. J. McConalogue,et al. On the Tabulation of the Renewal Function , 1982 .
[11] Hayriye Ayhan,et al. An approach for computing tight numerical bounds on renewal functions , 1999 .
[12] John S. White,et al. Weibull Renewal Analysis , 1964 .
[13] R. Dekker,et al. A simple approximation to the renewal function (reliability theory) , 1990 .
[14] W. Preuss,et al. On a Simple Numerical Method for Computing Stieltjes Integrals in Reliability Theory , 1991 .
[15] Min Xie,et al. On the solution of renewal-type integral equations , 1989 .
[16] Mark L. Spearman. A simple approximation for IFR weibull renewal functions , 1989 .