Software Metrics Mining to Predict the Performance of Estimation of Distribution Algorithms in Test Data Generation

[1]  J. A. Lozano,et al.  Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms (Studies in Fuzziness and Soft Computing) , 2006 .

[2]  José Antonio Lozano,et al.  On The Performance Of Estimation Of Distribution Algorithms Applied To Software Testing , 2005, Appl. Artif. Intell..

[3]  Joachim Wegener,et al.  Evaluating Evolutionary Testability with Software-Measurements , 2004, GECCO.

[4]  Phil McMinn,et al.  Search‐based software test data generation: a survey , 2004, Softw. Test. Verification Reliab..

[5]  Yuriy Brun,et al.  Finding latent code errors via machine learning over program executions , 2004, Proceedings. 26th International Conference on Software Engineering.

[6]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[7]  Robert C. Holte,et al.  Very Simple Classification Rules Perform Well on Most Commonly Used Datasets , 1993, Machine Learning.

[8]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[9]  Walter F. Tichy,et al.  Proceedings 25th International Conference on Software Engineering , 2003, 25th International Conference on Software Engineering, 2003. Proceedings..

[10]  William H. Press,et al.  Numerical recipes in C , 2002 .

[11]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[12]  Joachim Wegener,et al.  Evolutionary test environment for automatic structural testing , 2001, Inf. Softw. Technol..

[13]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[14]  W. Eric Wong,et al.  Applying design metrics to predict fault‐proneness: a case study on a large‐scale software system , 2000 .

[15]  Pedro Larrañaga,et al.  Combinatonal Optimization by Learning and Simulation of Bayesian Networks , 2000, UAI.

[16]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[17]  B. Schölkopf,et al.  Advances in kernel methods: support vector learning , 1999 .

[18]  Heinz Mühlenbein,et al.  The Equation for Response to Selection and Its Use for Prediction , 1997, Evolutionary Computation.

[19]  Enrique F. Castillo,et al.  Expert Systems and Probabilistic Network Models , 1996, Monographs in Computer Science.

[20]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[21]  Ron Kohavi,et al.  Supervised and Unsupervised Discretization of Continuous Features , 1995, ICML.

[22]  Harmen-Hinrich Sthamer,et al.  The automatic generation of software test data using genetic algorithms , 1995 .

[23]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[24]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[25]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[26]  D. R. Lick,et al.  Graph theory with applications to algorithms and computer science , 1985 .

[27]  Boris Beizer,et al.  Software Testing Techniques , 1983 .

[28]  Anas N. Al-Rabadi,et al.  A comparison of modified reconstructability analysis and Ashenhurst‐Curtis decomposition of Boolean functions , 2004 .

[29]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.