HNK‐1 in Morphological Study of Development of the Cardiac Conduction System in Selected Groups of Sauropsida

Human natural killer (HNK)‐1 antibody is an established marker of developing cardiac conduction system (CCS) in birds and mammals. In our search for the evolutionary origin of the CCS, we tested this antibody in a variety of sauropsid species (Crocodylus niloticus, Varanus indicus, Pogona vitticeps, Pantherophis guttatus, Eublepharis macularius, Gallus gallus, and Coturnix japonica). Hearts of different species were collected at various stages of embryonic development and studied to map immunoreactivity in cardiac tissues. We performed detection on alternating serial paraffin sections using immunohistochemistry for smooth muscle actin or sarcomeric actin as myocardial markers, and HNK‐1 to visualize overall staining pattern and then positivity in specific myocyte populations. We observed HNK‐1 expression of various intensity distributed in the extracellular matrix and mesenchymal cell surface of cardiac cushions in most of the examined hearts. Strong staining was found in the cardiac nerve fibers and ganglia in all species. The myocardium of the sinus venosus and the atrioventricular canal exhibited transitory patterns of expression. In the Pogona and Crocodylus hearts, as well as in the Gallus and Coturnix ones, additional expression was detected in a subset of myocytes of the (inter)ventricular septum. These results support the use of HNK‐1 as a conserved marker of the CCS and suggest that there is a rudimentary CCS present in developing reptilian hearts. Anat Rec, 302:69–82, 2019. © 2018 Wiley Periodicals, Inc.

[1]  B. Jensen,et al.  Relative position of the atrioventricular canal determines the electrical activation of developing reptile ventricles , 2018, Journal of Experimental Biology.

[2]  J. Bogan Ophidian Cardiology—A Review , 2017, Journal of Herpetological Medicine and Surgery.

[3]  A. G. Gittenberger-de Groot,et al.  Outflow tract septation and the aortic arch system in reptiles: lessons for understanding the mammalian heart , 2017, EvoDevo.

[4]  D. Sedmera,et al.  Acute temperature effects on function of the chick embryonic heart , 2016, Acta Physiologica.

[5]  G. Grigg,et al.  Biology and Evolution of Crocodylians , 2015 .

[6]  J. Losos Tuatara: biology and conservation of a venerable survivor , 2014 .

[7]  A. Moorman,et al.  Structure and function of the hearts of lizards and snakes , 2014, Biological reviews of the Cambridge Philosophical Society.

[8]  K. Gicana,et al.  ELECTROCARDIOGRAPHIC PROFILE OF CAPTIVE MARBLED WATER MONITOR LIZARD (Varanus marmoratus, Weigmann, 1834) , 2013 .

[9]  R. Irmis,et al.  Anatomy, phylogeny and palaeobiology of early archosaurs and their kin , 2013 .

[10]  A. Moorman,et al.  Development of the Hearts of Lizards and Snakes and Perspectives to Cardiac Evolution , 2013, PloS one.

[11]  R. A. Pyron,et al.  A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes , 2013, BMC Evolutionary Biology.

[12]  R. A. Pyron,et al.  A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes , 2013, BMC Evolutionary Biology.

[13]  A. Moorman,et al.  Evolution and development of the building plan of the vertebrate heart. , 2013, Biochimica et biophysica acta.

[14]  A. Moorman,et al.  Identifying the Evolutionary Building Blocks of the Cardiac Conduction System , 2012, PloS one.

[15]  E. Krejčí,et al.  The effect of connexin40 deficiency on ventricular conduction system function during development. , 2012, Cardiovascular research.

[16]  F. Delsuc,et al.  Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria) , 2012, BMC Biology.

[17]  J. Nyengaard,et al.  Anatomy of the python heart , 2010, Anatomical science international.

[18]  Jie Zhang,et al.  Contactin-2 Expression in the Cardiac Purkinje Fiber Network , 2010, Circulation. Arrhythmia and electrophysiology.

[19]  M. Kundrát Heterochronic shift between early organogenesis and migration of cephalic neural crest cells in two divergent evolutionary phenotypes of archosaurs: crocodile and ostrich , 2009, Evolution & development.

[20]  Scott F. Gilbert,et al.  Reptilian heart development and the molecular basis of cardiac chamber evolution , 2009, Nature.

[21]  D. Shmakov,et al.  A comparative study of contractility of the heart ventricle in some ectothermic vertebrates , 2009 .

[22]  M. Blaha,et al.  Abnormal Myocardial and Coronary Vasculature Development in Experimental Hypoxia , 2008, Anatomical record.

[23]  M. Kundrát HNK-1 immunoreactivity during early morphogenesis of the head region in a nonmodel vertebrate, crocodile embryo , 2008, Naturwissenschaften.

[24]  J. Barbosa,et al.  New dyrosaurid crocodylomorph and evidences for faunal turnover at the K–P transition in Brazil , 2008, Proceedings of the Royal Society B: Biological Sciences.

[25]  Abhijit A. Gurjarpadhye,et al.  Cardiac neural crest ablation inhibits compaction and electrical function of conduction system bundles. , 2007, American journal of physiology. Heart and circulatory physiology.

[26]  Michiko Watanabe,et al.  Differential levels of tissue hypoxia in the developing chicken heart , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[27]  Ren-de Li,et al.  Electrocardiogram and heart rate in response to temperature acclimation in three representative vertebrates. , 2005, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[28]  R. Shine Life-History Evolution in Reptiles , 2005 .

[29]  S. Hedges,et al.  The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. , 2005, Comptes rendus biologies.

[30]  R. P. Thompson,et al.  Optical Mapping of Electrical Activation in the Developing Heart , 2004, Microscopy and Microanalysis.

[31]  Tobias Wang,et al.  Ventricular haemodynamics in Python molurus: separation of pulmonary and systemic pressures , 2003, Journal of Experimental Biology.

[32]  E. Tibbetts,et al.  Molecular systematics of primary reptilian lineages and the tuatara mitochondrial genome. , 2003, Molecular phylogenetics and evolution.

[33]  A. Moorman,et al.  Cardiac chamber formation: development, genes, and evolution. , 2003, Physiological reviews.

[34]  M. Egerbacher,et al.  Immunohistochemical Demonstration of Leu‐7 (HNK‐1), Neurone‐Specific Enolase (NSE) and Protein‐Gene Peptide (PGP) 9.5 in the Developing Camel (Camelus dromedarius) Heart , 2001, Anatomia, histologia, embryologia.

[35]  J. Wiens,et al.  HOW LIZARDS TURN INTO SNAKES: A PHYLOGENETIC ANALYSIS OF BODY‐FORM EVOLUTION IN ANGUID LIZARDS , 2001, Evolution; international journal of organic evolution.

[36]  L. Espino,et al.  ELECTROCARDIOGRAM REFERENCE VALUES FOR THE BUZZARD IN SPAIN , 2001, Journal of wildlife diseases.

[37]  M. Nomura,et al.  Expression of HNK1 epitope by the cardiomyocytes of the early embryonic chick: In situ and in vitro studies , 2001, The Anatomical record.

[38]  M. DeRuiter,et al.  Development of the cardiac conduction tissue in human embryos using HNK-1 antigen expression: possible relevance for understanding of abnormal atrial automaticity. , 1999, Circulation.

[39]  Michiko Watanabe,et al.  Differential expression of PSA‐NCAM and HNK‐1 epitopes in the developing cardiac conduction system of the chick , 1997, Developmental dynamics : an official publication of the American Association of Anatomists.

[40]  P. Withers,et al.  Standard and Maximal Metabolic Rates of Goannas (Squamata: Varanidae) , 1997, Physiological Zoology.

[41]  Michael S. Y. Lee The phylogeny of varanoid lizards and the affinities of snakes , 1997 .

[42]  Tobias Wang,et al.  Functional role of cardiac shunts in reptiles , 1996 .

[43]  M. DeRuiter,et al.  In normal development pulmonary veins are connected to the sinus venosus segment in the left atrium , 1995, The Anatomical record.

[44]  Michel Laurin,et al.  A reevaluation of early amniote phylogeny , 1995 .

[45]  D. Tibboel,et al.  The distribution and characterization of HNK-1 antigens in the developing avian heart , 1993, Anatomy and Embryology.

[46]  S. Yamashina,et al.  Immunohistochemical study on the development of the rat heart conduction system using anti-Leu-7 antibody. , 1993, Archives of histology and cytology.

[47]  S. Adolph,et al.  Temperature, Activity, and Lizard Life Histories , 1993, The American Naturalist.

[48]  Robert P. Thompson,et al.  Developmental anatomy of HNK-1 immunoreactivity in the embryonic rat heart: co-distribution with early conduction tissue , 1993, Anatomy and Embryology.

[49]  I. Shimokawa,et al.  HNK-1 expression pattern in normal and bis-diamine induced malformed developing rat heart: three dimensional reconstruction analysis using computer graphics , 1992, Anatomy and Embryology.

[50]  M. Kirby,et al.  Role of Neural Crest in Congenital Heart Disease , 1990, Circulation.

[51]  R. Nordlander,et al.  HNK-1 marks earliest axonal outgrowth in Xenopus. , 1989, Brain research. Developmental brain research.

[52]  W. Burggren,et al.  Cardiac design in lower vertebrates: what can phylogeny reveal about ontogeny? , 1988, Experientia.

[53]  S. Schiaffino,et al.  Heart conduction system: a neural crest derivative? , 1988, Brain Research.

[54]  C. Balch,et al.  A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). , 1981, Journal of immunology.

[55]  G. Webb Comparative cardiac anatomy of the reptilia. III. The heart of crocodilians and an hypothesis on the completion of the interventricular septum of crocodilians and birds , 1979, Journal of morphology.

[56]  H. Heatwole,et al.  Comparative cardiac anatomy of the reptilia. II. A critique of the literature on the Squamata and Rhynchocephalia , 1974, Journal of morphology.

[57]  H. S. McDonald,et al.  Electrocardiographic observations on the tuatara, Sphenodon punctatus. , 1971, Comparative biochemistry and physiology. A, Comparative physiology.

[58]  H. Heatwole,et al.  Comparative cardiac anatomy of the reptilia. I. The chambers and septa of the varanid ventricle , 1971, Journal of morphology.

[59]  F. White Functional anatomy of the heart of reptiles. , 1968, American zoologist.

[60]  R. Mullen Comparative Electrocardiography of the Squamata , 1967, Physiological Zoology.

[61]  H. M. Kaplan,et al.  ELECTROCARDIOGRAPHY IN TURTLES. , 1963, Life sciences.

[62]  F. Davies,et al.  THE CONDUCTING SYSTEM OF THE VERTEBRATE HEART* , 1942, British heart journal.

[63]  F. Davies,et al.  The heart of the salamander (salamandra salamandra l.), with special reference to the conducting (connecting) system and its bearing on the phylogeny of the conducting systems of mammalian and avian hearts , 1941, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[64]  W. Einthoven,et al.  Die galvanometrische Registrirung des menschlichen Elektrokardiogramms, zugleich eine Beurtheilung der Anwendung des Capillar-Elektrometers in der Physiologie , 1903, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[65]  I. Horáček,et al.  Embryonic development of the monitor lizard, Varanus indicus , 2012 .

[66]  I. Efimov,et al.  Electrophysiology and anatomy of embryonic rabbit hearts before and after septation. , 2005, American journal of physiology. Heart and circulatory physiology.

[67]  I. Shimokawa,et al.  Leu-7 immunoreactivity in human and rat embryonic hearts, with special reference to the development of the conduction tissue , 2004, Anatomy and Embryology.

[68]  E. Pianka,et al.  Varanoid Lizards of the World , 2004 .

[69]  A. Martínez-Silvestre,et al.  Electrocardiographic Parameters in the Gomeran Giant Lizard, Gallotia bravoana , 2003 .

[70]  M. DeRuiter,et al.  HNK-1 expression patterns in the embryonic rat heart distinguish between sinuatrial tissues and atrial myocardium , 2000, Anatomy and Embryology.

[71]  T. Hetherington,et al.  Cardiopulmonary Effects and Efficacy of Propofol as an Anesthetic Agent in Brown Tree Snakes, Boiga irregularis , 1999 .

[72]  Stephen W. Wilson,et al.  The development of a simple scaffold of axon tracts in the brain of the embryonic zebrafish, Brachydanio rerio. , 1990, Development.

[73]  Archosaur phylogeny and the relationships of the Crocodyli a , 2022 .