The hyperbolic smoothing clustering method

The minimum sum-of-squares clustering problem is considered. The mathematical modeling of this problem leads to a min-sum-min formulation which, in addition to its intrinsic bi-level nature, has the significant characteristic of being strongly nondifferentiable. To overcome these difficulties, the resolution, method proposed adopts a smoothing strategy using a special C^~ differentiable class function. The final solution is obtained by solving a sequence of low dimension differentiable unconstrained optimization subproblems which gradually approach the original problem. The use of this technique, called hyperbolic smoothing, allows the main difficulties presented by the original problem to be overcome. A simplified algorithm containing only the essentials of the method is presented. For the purpose of illustrating both the reliability and the efficiency of the method, a set of computational experiments was performed, making use of traditional test problems described in the literature

[1]  P. Brucker On the Complexity of Clustering Problems , 1978 .

[2]  Pierre Hansen,et al.  J-MEANS: a new local search heuristic for minimum sum of squares clustering , 1999, Pattern Recognit..

[3]  Anil K. Jain,et al.  Clustering techniques: The user's dilemma , 1976, Pattern Recognit..

[4]  Adil M. Bagirov,et al.  A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems , 2006, Eur. J. Oper. Res..

[5]  Huub M. M. ten Eikelder,et al.  Unification of some Least Squares Clustering Methods , 2004, J. Math. Model. Algorithms.

[6]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.

[7]  Joaquín A. Pacheco,et al.  Design of hybrids for the minimum sum-of-squares clustering problem , 2003, Comput. Stat. Data Anal..

[8]  Adil M. Bagirov,et al.  Modified global k-means algorithm for minimum sum-of-squares clustering problems , 2008, Pattern Recognit..

[9]  Enrique H. Ruspini,et al.  Numerical methods for fuzzy clustering , 1970, Inf. Sci..

[10]  Alexei Demyanov On the Solution of Min-sum-min Problems , 2005, J. Glob. Optim..

[11]  Antonio A. F. Oliveira,et al.  Optimal Covering of Plane Domains by Circles Via Hyperbolic Smoothing , 2005, J. Glob. Optim..

[12]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[13]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[14]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[15]  F. Yates Contributions to Mathematical Statistics , 1951, Nature.

[16]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[17]  Keinosuke Fukunaga,et al.  A Branch and Bound Clustering Algorithm , 1975, IEEE Transactions on Computers.

[18]  Pierre Hansen,et al.  An Interior Point Algorithm for Minimum Sum-of-Squares Clustering , 1997, SIAM J. Sci. Comput..

[19]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[20]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[21]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[22]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[23]  Pierre Hansen,et al.  Analysis of Global k-Means, an Incremental Heuristic for Minimum Sum-of-Squares Clustering , 2005, J. Classif..

[24]  Robert F. Ling,et al.  Cluster analysis algorithms for data reduction and classification of objects , 1981 .

[25]  Pierre Hansen,et al.  Cluster analysis and mathematical programming , 1997, Math. Program..

[26]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[27]  Olvi L. Mangasarian,et al.  Mathematical Programming in Data Mining , 1997, Data Mining and Knowledge Discovery.

[28]  Robert E. Jensen,et al.  A Dynamic Programming Algorithm for Cluster Analysis , 1969, Oper. Res..