On the Number of Limit Cycles by Perturbing a Piecewise Smooth Liénard Model

In this paper, we study the number of limit cycles by perturbing a Lienard model ẋ = y, ẏ = −g(x), where g(x) is piecewise smooth. Under the assumption that the unperturbed Lienard type system has a family of periodic orbits, we first deduce the expression for its first order Melnikov function, and then obtain the maximum number of limit cycles bifurcating from the period annulus.

[1]  J. C. Jackson,et al.  Descartes' Rule of Signs Revisited , 1998 .

[2]  Valery G. Romanovski,et al.  Bifurcation of Limit Cycles by Perturbing a Piecewise Linear Hamiltonian System , 2013 .

[3]  Yuehua Wu,et al.  Bifurcations of limit cycles in a Z4-equivariant quintic planar vector field , 2010 .

[4]  Chengzhi Li,et al.  A cubic system with thirteen limit cycles , 2009 .

[5]  Ju S Il'jašenko THE ORIGIN OF LIMIT CYCLES UNDER PERTURBATION OF THE EQUATION dw/dz = - Rz/Rw, WHERE R(z, w) IS A POLYNOMIAL , 1969 .

[6]  Yuhai Wu,et al.  On the Number and Distributions of Limit Cycles in a quintic Planar Vector Field , 2008, Int. J. Bifurc. Chaos.

[7]  Tonghua Zhang,et al.  Bifurcations of limit cycles for a cubic Hamiltonian system under quartic perturbations , 2004 .

[8]  Moses O. Tadé,et al.  The Number and Distributions of Limit Cycles for a Class of Quintic Near-Hamiltonian Systems , 2006, Comput. Math. Appl..

[9]  Yanqin Xiong,et al.  Limit cycle bifurcations by perturbing piecewise smooth Hamiltonian systems with multiple parameters , 2015 .

[10]  Noel G. Lloyd,et al.  Polynomial systems: a lower bound for the Hilbert numbers , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[11]  Yanqin Xiong,et al.  Limit cycles for perturbing a piecewise linear Hamiltonian system with one or two saddles , 2014 .

[12]  Maoan Han,et al.  Lower bounds for the Hilbert number of polynomial systems , 2012 .

[13]  LIJUAN SHENG Limit Cycles of a Class of Piecewise Smooth Liénard Systems , 2016, Int. J. Bifurc. Chaos.

[14]  Wang Zheng,et al.  Bifurcation of Limit Cycles in a Fourth-Order Near-Hamiltonian System , 2007, Int. J. Bifurc. Chaos.

[15]  Maoan Han,et al.  Limit cycle bifurcations in a class of near-Hamiltonian systems with multiple parameters☆ , 2014 .

[16]  Guanrong Chen,et al.  On the Number of Limit Cycles in Near-Hamiltonian Polynomial Systems , 2007, Int. J. Bifurc. Chaos.

[17]  Valery G. Romanovski,et al.  Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop , 2011 .

[18]  Xia Liu,et al.  Bifurcation of Limit Cycles by Perturbing Piecewise Hamiltonian Systems , 2010, Int. J. Bifurc. Chaos.

[19]  Maoan Han,et al.  Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems , 2012 .

[20]  Yirong Liu,et al.  New Results on the Study of Zq-Equivariant Planar Polynomial Vector Fields , 2010 .

[21]  Pei Yu,et al.  Twelve Limit Cycles in a cubic Case of the 16TH Hilbert Problem , 2005, Int. J. Bifurc. Chaos.

[22]  Tonghua Zhang,et al.  On the Number and Distribution of Limit Cycles in a cubic System , 2004, Int. J. Bifurc. Chaos.

[23]  Ping Bi,et al.  A new cubic system having eleven limit cycles , 2005 .

[24]  Valery G. Romanovski,et al.  Limit cycle bifurcations in a class of piecewise smooth systems with a double homoclinic loop , 2014, Appl. Math. Comput..