Analysis of thermal system network of an ammonia plant using genetic algorithms - part II: network modification

This part of the paper examines two options of modification of the HEN of the ammonia plant based on two methods of pinch analyses, viz., network pinch method (NPM) and retrofitting analysis (RA) using genetic algorithms for both ∆Tmin and Qmin approaches. Using NPM with ∆Tmin and Qmin approaches, it is seen that there is a scope for reduction in hot and cold utilities by 1,758 kW and subsequently reduction in area of HEN by 368 m2and 136 m2which results in decrease of total annual cost by 1.71% and 1.30% respectively. Amongst the combination of modification, it is also found that using NPM with ∆Tmin approach, the hot and cold utility requirements for existing area efficiency and ideal area efficiency can be reduced with a payback period of 1.69 years and 0.80 years respectively.

[1]  Peter J.T. Verheijen,et al.  The placement of two-stream and multi-stream heat-exchangers in an existing network through path analysis , 1995 .

[2]  Thore Berntsson,et al.  Use of advanced composite curves for assessing cost-effective HEN retrofit I: Theory and concepts , 2009 .

[3]  M. H. Panjeshahi,et al.  Retrofit of ammonia plant for improving energy efficiency , 2008 .

[4]  W. Gool,et al.  Fundamental aspects of energy conservation policy , 1980 .

[5]  D. Reay Heat recovery—an opportunity for process redesign or a case for retrofitting? , 1985 .

[6]  Imad Alatiqi,et al.  Energy retrofit study of an ammonia plant , 2000 .

[7]  S. Nand,et al.  Recent Efforts in Energy Conservation in Ammonia and Urea Plants , 2008 .

[8]  Miguel J. Bagajewicz Energy savings horizons for the retrofit of chemical processes. Application to crude fractionation units , 1998 .

[9]  Sunwon Park,et al.  Heat integration analysis for an industrial ethylbenzene plant using pinch analysis , 2007 .

[10]  François Maréchal,et al.  Energy savings in methanol synthesis: Use of heat integration techniques and simulation tools , 1997 .

[11]  Bengt Sundén,et al.  Optimizing a refinery using the pinch technology and the mind method , 1994 .

[12]  M. J. Shah,et al.  Control and optimization of a large ammonia plant with a digital computer , 1969, Autom..

[13]  Bodo Linnhoff,et al.  Pinch technology has come of age , 1984 .

[14]  Christodoulos A. Floudas,et al.  A comprehensive optimization model of the heat exchanger network retrofit problem , 1990 .

[15]  Klaus Görner,et al.  Analysis of retrofitting coal-fired power plants with carbon dioxide capture , 2009 .

[16]  K. L. Lee,et al.  Refinery heat integration using pinch technology , 1989 .

[17]  Bodo Linnhoff,et al.  Using pinch technology for process retrofit , 1986 .

[18]  Ebrahim Rezaei,et al.  Heat exchanger networks retrofit by coupling genetic algorithm with NLP and ILP methods , 2009, Comput. Chem. Eng..

[19]  Thore Berntsson,et al.  Use of advanced composite curves for assessing cost-effective HEN retrofit II. Case studies , 2009 .

[20]  Ljubica Matijašević,et al.  Energy recovery by pinch technology , 2002 .

[21]  Otto Rentz,et al.  Environmental integrated production planning for the ammonia synthesis , 1997 .

[22]  Christodoulos A. Floudas,et al.  A retrofit approach for heat exchanger networks , 1989 .

[23]  U. V. Shenoy,et al.  Heat Exchanger Network Synthesis:: Process Optimization by Energy and Resource Analysis , 1995 .

[24]  A. D. Stephens,et al.  Steady state and dynamic analysis of an ammonia synthesis plant , 1973 .

[25]  Zhaolin Gu,et al.  Retrofitting of a distillery based on process synthesis , 2007 .

[26]  Stanislaw Sieniutycz,et al.  Heat exchanger network synthesis , 2013 .

[27]  Simon Perry,et al.  Heat integration retrofit analysis of a heat exchanger network of a fluid catalytic cracking plant , 2001 .

[28]  Fernando L.P. Pessoa,et al.  AN ALTERNATIVE PROCEDURE TO RETROFIT AN INDUSTRIAL PLANT. A CASE STUDY , 2002 .

[29]  Luis Puigjaner,et al.  On the solution of the retrofitting problem for multiproduct batch/simicontinuous chemical plants , 1989 .

[30]  W. D. Witherell,et al.  Pinch technology guides retrofit , 1986 .

[31]  Chi Wai Hui,et al.  Constant approach temperature model for HEN retrofit , 2000 .

[32]  Pingjing Yao,et al.  Application of total process energy-integration in retrofitting an ammonia plant , 2003 .

[33]  Igor Bulatov Retrofit Optimization Framework for Compact Heat Exchangers , 2005 .

[34]  L. Puigjaner,et al.  A new look at energy integration in multiproduct batch processes , 1993 .

[35]  Petar Sabev Varbanov,et al.  Rules for paths construction for HENs debottlenecking , 2000 .

[36]  N.D.K. Asante,et al.  An Automated and Interactive Approach for Heat Exchanger Network Retrofit , 1997 .

[37]  Antonis C. Kokossis,et al.  Hypertargets: a Conceptual Programming approach for the optimisation of industrial heat exchanger networks — II. Retrofit design , 1999 .

[38]  G. T. Polley,et al.  Debottlenecking of heat exchanger networks , 1990 .

[39]  Peter J.T. Verheijen,et al.  Structural targeting for heat integration retrofit , 1998 .

[40]  Z. Fonyo,et al.  Process development for waste minimization : the retrofitting problem , 1994 .

[41]  Y. P. Wang,et al.  Rapid analysis of heat recovery in industrial plants , 1989 .

[42]  Jiří Jaromír Klemeš,et al.  Heat Transfer Enhancement for Heat Exchanger Network Retrofit , 2000 .

[43]  D. A. Jones,et al.  Synthesis techniques for retrofitting heat recovery systems , 1986 .

[44]  D. Rashtchian,et al.  An integrated framework of process and environmental models, and EHS constraints for retrofit targeting , 2001 .

[45]  Kevin Dahm,et al.  Retrofit of sour water networks in oil refineries: A case study , 2009 .

[46]  Jacek Jeżowski,et al.  Genetic algorithms approach for retrofitting heat exchanger network with standard heat exchangers , 2006 .

[47]  B. L. Yeap,et al.  Retrofitting Crude Oil Refinery Heat Exchanger Networks to Minimize Fouling While Maximizing Heat Recovery , 2005 .