Navier-Stokes equations and forward-backward SDEs on the group of diffeomorphisms of a torus

We establish a connection between the strong solution to the spatially periodic Navier-Stokes equations and a solution to a system of forward-backward stochastic differential equations (FBSDEs) on the group of volume-preserving diffeomorphisms of a flat torus. We construct representations of the strong solution to the Navier-Stokes equations in terms of diffusion processes.

[1]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[2]  J. Yong,et al.  Solving forward-backward stochastic differential equations explicitly — a four step scheme , 1994 .

[3]  F. Delarue On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case , 2002 .

[4]  Y. Gliklikh Ordinary and Stochastic Differential Geometry as a Tool for Mathematical Physics , 1996 .

[5]  V. Arnold Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits , 1966 .

[6]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[7]  D. Gomes ON A VARIATIONAL PRINCIPLE FOR THE NAVIER-STOKES EQUATION , 2007 .

[8]  S. Yau Mathematics and its applications , 2002 .

[9]  Ana Bela Cruzeiro,et al.  Nonergodicity of Euler fluid dynamics on tori versus positivity of the Arnold-Ricci tensor , 2008 .

[10]  I. Davies Probabilistic Methods in Fluids , 2003 .

[11]  Alain-Sol Sznitman,et al.  Stochastic cascades and 3-dimensional Navier–Stokes equations , 1997 .

[12]  Y. Belopolskaya Probabilistic representation of solutions of hydrodynamic equations , 2000 .

[13]  É. Pardoux,et al.  Forward-backward stochastic differential equations and quasilinear parabolic PDEs , 1999 .

[14]  S. Albeverio,et al.  Generalized solutions of the Cauchy problem for the Navier-Stokes system and diffusion processes , 2007, 0709.1008.

[15]  Stochastic variational derivations of the Navier-Stokes equation , 1981 .

[16]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[17]  New version of the Lagrange approach to the dynamics of a viscous incompressible fluid , 1994 .

[18]  Steve Shkoller Geometry and Curvature of Diffeomorphism Groups withH1Metric and Mean Hydrodynamics , 1998 .

[19]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[20]  V. Ginzburg,et al.  Global Analysis in Mathematical Physics: Geometric and Stochastic Methods , 1997 .

[21]  A stochastic Lagrangian representation of the three‐dimensional incompressible Navier‐Stokes equations , 2005, math/0511067.

[22]  Yu. L. Daletskiǐ,et al.  Stochastic Equations and Differential Geometry , 1990 .

[23]  S. Albeverio,et al.  PROBABILISTIC APPROACH TO HYDRODYNAMIC EQUATIONS , 2003 .

[24]  Halldór I. Elíasson Geometry of manifolds of maps , 1967 .

[25]  Navier-Stokes Equation and Diffusions on the Group of Homeomorphisms of the Torus , 2007 .