The Reverse Method of Lines in Flexible Multibody Dynamics

Adaptivity is a crucial prerequisite for efficient and reliable simulations. In multibody dynamics, adaptive time integration methods are standard today, but the treatment of elastic bodies is still based on an a priori fixed spatial discretization. This contribution introduces a basic algorithm in the fashion of the reverse method of lines that is able to adapt both the spatial grid and the time step size from step to step. Two examples, a catenary with a moving pantograph head and a flexible slider crank mechanism, illustrate the approach.

[1]  Werner Schiehlen,et al.  Advanced Multibody System Dynamics , 1899 .

[2]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[3]  Olivier A. Bauchau,et al.  Flexible multibody dynamics , 2010 .

[4]  Carsten Carstensen,et al.  A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.

[5]  Christoph Lunk,et al.  Solving constrained mechanical systems by the family of Newmark and α‐methods , 2006 .

[6]  R. Schwertassek,et al.  Dynamik flexibler Mehrkörpersysteme , 1999 .

[7]  Bernd Simeon,et al.  On Lagrange multipliers in flexible multibody dynamics , 2006 .

[8]  K. Popp,et al.  Approximate Analysis of Flexible Parts in Multibody Systems Using the Finite Element Method , 1993 .

[9]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[10]  C. W. Gear,et al.  Automatic integration of Euler-Lagrange equations with constraints , 1985 .

[11]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[12]  Jens Lang,et al.  Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems - Theory, Algorithm, and Applications , 2001, Lecture Notes in Computational Science and Engineering.

[13]  Gene H. Golub,et al.  Matrix computations , 1983 .

[14]  Olivier A. Bauchau,et al.  Time-Step-Size-Independent Conditioning and Sensitivity to Perturbations in the Numerical Solution of Index Three Differential Algebraic Equations , 2007, SIAM J. Sci. Comput..

[15]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[16]  Harold A. Buetow,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[17]  E. Fuehrer C. Eich,et al.  Numerical Methods in Multibody Dynamies , 1992 .

[18]  E. Hairer Symmetric Projection Methods for Differential Equations on Manifolds , 2000 .

[19]  Folkmar A. Bornemann,et al.  An adaptive multilevel approach to parabolic equations : II. Variable-order time discretization based on a multiplicative error correction , 1991, IMPACT Comput. Sci. Eng..

[20]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[21]  M. Arnold,et al.  Convergence of the generalized-α scheme for constrained mechanical systems , 2007 .

[22]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[23]  Rolf Krause,et al.  Monotone Multigrid Methods on Nonmatching Grids for Nonlinear Multibody Contact Problems , 2003, SIAM J. Sci. Comput..

[24]  R. Krause,et al.  Monotone methods on non-matching grids for non-linear contact problems , 2003 .

[25]  Folkmar Bornemann,et al.  An adaptive Rothe method for the wave equation , 1998 .

[26]  Martin Arnold,et al.  Pantograph and catenary dynamics: a benchmark problem and its numerical solution , 2000 .

[27]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[28]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .