Host diet shapes functionally differentiated gut microbiomes in sympatric speciation of blind mole rats in Upper Galilee, Israel

The gut microbiome is important for host nutrient metabolism and ecological adaptation. However, how the gut microbiome is affected by host phylogeny, ecology and diet during sympatric speciation remain unclear. Here, we compare and contrast the gut microbiome of two sympatric blind mole rat species and correlate them with their corresponding host phylogeny, ecology soil metagenomes, and diet to determine how these factors may influence their gut microbiome. Our results indicate that within the host microbiome there is no significant difference in community composition, but the functions between the two sympatric species populations vary significantly. No significant correlations were found between the gut microbiome differentiation and their corresponding ecological soil metagenomes and host phylogeny. Functional enrichment analysis suggests that the host diets may account for the functional divergence of the gut microbiome. Our results will help us understand how the gut microbiome changes with corresponding ecological dietary factors in sympatric speciation of blind subterranean mole rats.

[1]  E. Nevo,et al.  Sympatric Speciation in Mole Rats and Wild Barley and Their Genome Repeatome Evolution: A Commentary , 2022, Advanced genetics.

[2]  D. Barash,et al.  Incipient Sympatric Speciation and Evolution of Soil Bacteria Revealed by Metagenomic and Structured Non-Coding RNAs Analysis , 2022, Biology.

[3]  Xiaohuan Mu,et al.  Honeybee gut Lactobacillus modulates host learning and memory behaviors via regulating tryptophan metabolism , 2022, Nature Communications.

[4]  H. Tilg,et al.  Gut microbiome and health: mechanistic insights , 2022, Gut.

[5]  Lisbeth A. Louderback,et al.  Direct Evidence for Geophyte Exploitation in the Wyoming Basin , 2021, American Antiquity.

[6]  E. Nevo,et al.  Local Adaptation of Bitter Taste and Ecological Speciation in a Wild Mammal , 2021, Molecular biology and evolution.

[7]  Wenjun Liu,et al.  Exposure to soil environments during earlier life stages is distinguishable in the gut microbiome of adult mice , 2020, Gut microbes.

[8]  L. Brodsky,et al.  Genome evolution of blind subterranean mole rats: Adaptive peripatric versus sympatric speciation. , 2020, Proceedings of the National Academy of Sciences of the United States of America.

[9]  E. Nevo,et al.  Incipient sympatric speciation in wild barley caused by geological-edaphic divergence , 2020, Life Science Alliance.

[10]  G. Dantas,et al.  The gut microbiome defines social group membership in honey bee colonies , 2020, Science Advances.

[11]  R. Junge,et al.  A role for gut microbiota in host niche differentiation , 2020, The ISME Journal.

[12]  Donovan H Parks,et al.  GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database , 2019, Bioinform..

[13]  E. Nevo,et al.  Presumed ecological speciation in blind mole rats: does soil type influence mate preferences? , 2020, Ethology Ecology & Evolution.

[14]  Carolyn A. Miller,et al.  Coordinated transformation of the gut microbiome and lipidome of bowhead whales provides novel insights into digestion , 2019, The ISME Journal.

[15]  Ángel A. Valdés,et al.  Diet-driven ecological radiation and allopatric speciation result in high species diversity in a temperate-cold water marine genus dendronotus (gastropoda: nudibranchia). , 2019, Molecular phylogenetics and evolution.

[16]  Jennifer Lu,et al.  Improved metagenomic analysis with Kraken 2 , 2019, Genome Biology.

[17]  Andreas Wilke,et al.  MG-RAST version 4 - lessons learned from a decade of low-budget ultra-high-throughput metagenome analysis , 2019, Briefings Bioinform..

[18]  Srinivas Aluru,et al.  Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems , 2019, 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[19]  William A. Walters,et al.  Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades , 2018, Nature Communications.

[20]  Mi-Young Jeong,et al.  High-fat diet causes psychiatric disorders in mice by increasing Proteobacteria population , 2019, Neuroscience Letters.

[21]  Hiroyuki Ogata,et al.  KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold , 2019, bioRxiv.

[22]  C. Workman,et al.  The human gut Firmicute Roseburia intestinalis is a primary degrader of dietary β-mannans , 2019, Nature Communications.

[23]  J. DiRuggiero,et al.  Halophilic microbial community compositional shift after a rare rainfall in the Atacama Desert , 2019, The ISME Journal.

[24]  Wei Fan,et al.  The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids , 2018, Microbiome.

[25]  W. Kim,et al.  Review: Roles of Prebiotics in Intestinal Ecosystem of Broilers , 2018, Front. Vet. Sci..

[26]  M. G. Ortiz-López,et al.  Altered Gut Microbiota and Compositional Changes in Firmicutes and Proteobacteria in Mexican Undernourished and Obese Children , 2018, Front. Microbiol..

[27]  Eran Elinav,et al.  You are what you eat: diet, health and the gut microbiota , 2018, Nature Reviews Gastroenterology & Hepatology.

[28]  J. DiRuggiero,et al.  MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis , 2018, Microbiome.

[29]  Zhenglu Yang,et al.  dbCAN2: a meta server for automated carbohydrate-active enzyme annotation , 2018, Nucleic Acids Res..

[30]  L. Meyers,et al.  Terrestriality and bacterial transfer: a comparative study of gut microbiomes in sympatric Malagasy mammals , 2018, bioRxiv.

[31]  A. Kurilshikov,et al.  Environment dominates over host genetics in shaping human gut microbiota , 2018, Nature.

[32]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[33]  Jian Wang,et al.  SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data , 2017, GigaScience.

[34]  E. Nevo,et al.  Soil preference in blind mole rats in an area of supposed sympatric speciation: do they choose the fertile or the familiar? , 2017 .

[35]  Natalia N. Ivanova,et al.  Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea , 2017, Nature Biotechnology.

[36]  J. Banfield,et al.  dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication , 2017, The ISME Journal.

[37]  E. Alm,et al.  Unraveling the processes shaping mammalian gut microbiomes over evolutionary time , 2017, Nature Communications.

[38]  Yun S. Song,et al.  Robust and scalable inference of population history from hundreds of unphased whole genomes , 2016, Nature Genetics.

[39]  Andrew W. Brooks,et al.  Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History , 2016, PLoS biology.

[40]  Luis Pedro Coelho,et al.  Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper , 2016, bioRxiv.

[41]  F. Zhao,et al.  Convergent Evolution of Rumen Microbiomes in High-Altitude Mammals , 2016, Current Biology.

[42]  Zhen Long Wang,et al.  Transcriptome, genetic editing, and microRNA divergence substantiate sympatric speciation of blind mole rat, Spalax , 2016, Proceedings of the National Academy of Sciences.

[43]  E. Nevo,et al.  Activity of free-living subterranean blind mole rats Spalax galili (Rodentia: Spalacidae) in an area of supposed sympatric speciation , 2016 .

[44]  Steven Salzberg,et al.  Bracken: Estimating species abundance in metagenomics data , 2016, bioRxiv.

[45]  Simon Bahrndorff,et al.  The Microbiome of Animals: Implications for Conservation Biology , 2016, International journal of genomics.

[46]  E. Nevo,et al.  Adaptive methylation regulation of p53 pathway in sympatric speciation of blind mole rats, Spalax , 2016, Proceedings of the National Academy of Sciences.

[47]  K. Zenger,et al.  netview p: a network visualization tool to unravel complex population structure using genome‐wide SNPs , 2016, Molecular ecology resources.

[48]  R. Knight,et al.  Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota , 2015, The ISME Journal.

[49]  T. R. Licht,et al.  A catalog of the mouse gut metagenome , 2015, Nature Biotechnology.

[50]  Katherine H. Huang,et al.  Host genetic variation impacts microbiome composition across human body sites , 2015, Genome Biology.

[51]  E. Nevo,et al.  Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax , 2015, Proceedings of the National Academy of Sciences.

[52]  E. Nevo,et al.  Habitat and Burrow System Characteristics of the Blind Mole Rat Spalax galili in an Area of Supposed Sympatric Speciation , 2015, PloS one.

[53]  D. Mills,et al.  Diet shapes the gut microbiome of pigs during nursing and weaning , 2015, Microbiome.

[54]  Connor T. Skennerton,et al.  CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes , 2015, Genome research.

[55]  Olivier Gascuel,et al.  FastME 2.0: A Comprehensive, Accurate, and Fast Distance-Based Phylogeny Inference Program , 2015, Molecular biology and evolution.

[56]  K. Pollard,et al.  Marked seasonal variation in the wild mouse gut microbiota , 2015, The ISME Journal.

[57]  V. Tremaroli,et al.  Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. , 2015, Cell host & microbe.

[58]  Davide Heller,et al.  STRING v10: protein–protein interaction networks, integrated over the tree of life , 2014, Nucleic Acids Res..

[59]  Kunihiko Sadakane,et al.  MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph , 2014, Bioinform..

[60]  Robert G. Beiko,et al.  STAMP: statistical analysis of taxonomic and functional profiles , 2014, Bioinform..

[61]  E. Nevo,et al.  Adaptation of Pelage Color and Pigment Variations in Israeli Subterranean Blind Mole Rats, Spalax Ehrenbergi , 2013, PloS one.

[62]  C. Martin STRONG ASSORTATIVE MATING BY DIET, COLOR, SIZE, AND MORPHOLOGY BUT LIMITED PROGRESS TOWARD SYMPATRIC SPECIATION IN A CLASSIC EXAMPLE: CAMEROON CRATER LAKE CICHLIDS , 2013, Evolution; international journal of organic evolution.

[63]  Mark V Brown,et al.  Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals. , 2013, Environmental microbiology.

[64]  A. Knoll,et al.  Animals in a bacterial world, a new imperative for the life sciences , 2013, Proceedings of the National Academy of Sciences.

[65]  E. Nevo Stress, adaptation, and speciation in the evolution of the blind mole rat, Spalax, in Israel. , 2013, Molecular phylogenetics and evolution.

[66]  E. Nevo,et al.  Possible incipient sympatric ecological speciation in blind mole rats (Spalax) , 2013, Proceedings of the National Academy of Sciences.

[67]  S. Alseekh,et al.  The effect of Sarcopoterium spinosum on soil and vegetation characteristics , 2013 .

[68]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[69]  Qiang Feng,et al.  A metagenome-wide association study of gut microbiota in type 2 diabetes , 2012, Nature.

[70]  V. Tremaroli,et al.  Functional interactions between the gut microbiota and host metabolism , 2012, Nature.

[71]  S. Dowd,et al.  Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography , 2012, Molecular ecology.

[72]  C. Huttenhower,et al.  Metagenomic biomarker discovery and explanation , 2011, Genome Biology.

[73]  Kenneth Lange,et al.  Enhancements to the ADMIXTURE algorithm for individual ancestry estimation , 2011, BMC Bioinformatics.

[74]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[75]  Ruth Ley,et al.  Unravelling the effects of the environment and host genotype on the gut microbiome , 2011, Nature Reviews Microbiology.

[76]  Bryan A. White,et al.  Characterization of the Fecal Microbiome from Non-Human Wild Primates Reveals Species Specific Microbial Communities , 2010, PloS one.

[77]  D. Segal,et al.  Commensal bacteria play a role in mating preference of Drosophila melanogaster , 2010, Proceedings of the National Academy of Sciences.

[78]  P. Hugenholtz,et al.  Evolutionary Relationships of Wild Hominids Recapitulated by Gut Microbial Communities , 2010, PLoS biology.

[79]  Min Zhang,et al.  Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors , 2010, Proceedings of the National Academy of Sciences.

[80]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[81]  S. Massart,et al.  Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa , 2010, Proceedings of the National Academy of Sciences.

[82]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[83]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[84]  Siu-Ming Yiu,et al.  SOAP2: an improved ultrafast tool for short read alignment , 2009, Bioinform..

[85]  E. Nevo,et al.  Comparative mycobiotic and edaphic analyses of two neighboring soil profiles on different lithologies in Upper Galilee, Israel , 2009 .

[86]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[87]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[88]  Albert J. Vilella,et al.  EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in vertebrates. , 2009, Genome research.

[89]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[90]  E. Nevo,et al.  Diversity of cultured microfungal communities in surface horizons of soils on different lithologies in Upper Galilee, Israel , 2008 .

[91]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[92]  Peer Bork,et al.  Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation , 2007, Bioinform..

[93]  Y. Kolodny,et al.  Stratigraphic, geochronologic, and paleomagnetic constraints on Late Cretaceous volcanism in northern Israel , 2002 .

[94]  E Nevo,et al.  Evolution of genome–phenome diversity under environmental stress , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[95]  E Nevo,et al.  Seismic communication in a blind subterranean mammal: a major somatosensory mechanism in adaptive evolution underground. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Thomas W. Schoener,et al.  Resource Partitioning in Ecological Communities , 1974, Science.

[97]  E. Nevo OBSERVATIONS ON ISRAELI POPULATIONS OF THE MOLE RAT SPALAX E. EHRENBERGI NEHRING 1898 , 1961 .