ON THE ANALYSIS OF SPATIALLY-COUPLED GLDPC CODES AND THE WEIGHTED MIN-SUM ALGORITHM

[1]  Martin J. Wainwright,et al.  On the Optimality of Tree-reweighted Max-product Message-passing , 2005, UAI.

[2]  J. Justesen,et al.  Analysis of Iterated Hard Decision Decoding of Product Codes with Reed-Solomon Component Codes , 2007, 2007 IEEE Information Theory Workshop.

[3]  Hsien-Kuei Hwang,et al.  Uniform asymptotics of Poisson approximation to the Poisson-binomial distribution , 2011 .

[4]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[5]  Nenad Miladinovic,et al.  Generalized LDPC codes and generalized stopping sets , 2008, IEEE Transactions on Communications.

[6]  P. Vontobel,et al.  On the Relationship between Linear Programming Decoding and Min-Sum Algorithm Decoding , 2004 .

[7]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[8]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[9]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[10]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[11]  Henry D. Pfister,et al.  Convergence of weighted min-sum decoding via dynamic programming on coupled trees , 2010, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.

[12]  Jae Hong Lee,et al.  Undetected error probabilities of binary primitive BCH codes for both error correction and detection , 1996, IEEE Trans. Commun..

[13]  Michel Jezequel,et al.  The Turbo Code Standard for DVB-RCS , 2004 .

[14]  Norman Abramson,et al.  Cascade Decoding of Cyclic Product Codes , 1968 .

[15]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[16]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[17]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[18]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[19]  Matthew S. Grob,et al.  CDMA/HDR: a bandwidth-efficient high-speed wireless data service for nomadic users , 2000, IEEE Commun. Mag..

[20]  Pascal O. Vontobel,et al.  A factor-graph-based random walk, and its relevance for LP decoding analysis and Bethe entropy characterization , 2010, 2010 Information Theory and Applications Workshop (ITA).

[21]  William T. Freeman,et al.  On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs , 2001, IEEE Trans. Inf. Theory.

[22]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[23]  Rüdiger L. Urbanke,et al.  Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC , 2010, IEEE Transactions on Information Theory.

[24]  Joel H. Spencer,et al.  Sudden Emergence of a Giantk-Core in a Random Graph , 1996, J. Comb. Theory, Ser. B.

[25]  Paul H. Siegel,et al.  On the asymptotic performance of iterative decoders for product codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[26]  D. Blackwell Discrete Dynamic Programming , 1962 .

[27]  Adel Javanmard,et al.  Information-Theoretically Optimal Compressed Sensing via Spatial Coupling and Approximate Message Passing , 2011, IEEE Transactions on Information Theory.

[28]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[29]  Kamil Sh. Zigangirov,et al.  Time-varying periodic convolutional codes with low-density parity-check matrix , 1999, IEEE Trans. Inf. Theory.

[30]  Nicolas Macris,et al.  A proof of threshold saturation for spatially-coupled LDPC codes on BMS channels , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[31]  Jørn Justesen,et al.  Error correcting coding for OTN , 2010, IEEE Communications Magazine.

[32]  Frank R. Kschischang,et al.  Staircase Codes: FEC for 100 Gb/s OTN , 2012, Journal of Lightwave Technology.

[33]  Jinghu Chen,et al.  Density evolution for two improved BP-Based decoding algorithms of LDPC codes , 2002, IEEE Communications Letters.

[34]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[35]  Henry D. Pfister,et al.  Approaching capacity at high rates with iterative hard-decision decoding , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[36]  Ralf Koetter,et al.  On the Block Error Probability of LP Decoding of LDPC Codes , 2006, ArXiv.

[37]  Ramesh Pyndiah,et al.  Near-optimum decoding of product codes: block turbo codes , 1998, IEEE Trans. Commun..

[38]  Arvind Yedla,et al.  Universality for Multi-terminal Problems via Spatial Coupling , 2012 .

[39]  Arya Mazumdar,et al.  On the Number of Errors Correctable with Codes on Graphs , 2009, IEEE Transactions on Information Theory.

[40]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[41]  Michael Lentmaier,et al.  On braided block codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[42]  Martin J. Wainwright,et al.  LP Decoding Corrects a Constant Fraction of Errors , 2004, IEEE Transactions on Information Theory.

[43]  Martin J. Wainwright,et al.  Using linear programming to Decode Binary linear codes , 2005, IEEE Transactions on Information Theory.

[44]  S. Janson,et al.  A simple solution to the k-core problem , 2007 .

[45]  Henry D. Pfister,et al.  A simple proof of threshold saturation for coupled scalar recursions , 2012, 2012 7th International Symposium on Turbo Codes and Iterative Information Processing (ISTC).

[46]  Alexandros G. Dimakis,et al.  Probabilistic Analysis of Linear Programming Decoding , 2007, IEEE Transactions on Information Theory.

[47]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[48]  Sanjeev Arora,et al.  Message-Passing Algorithms and Improved LP Decoding , 2009, IEEE Transactions on Information Theory.

[49]  Bahram Honary,et al.  Decoding of generalised low-density parity-check codes using weighted bit-flip voting , 2002 .

[50]  Michael Lentmaier,et al.  Convergence analysis for a class of LDPC convolutional codes on the erasure channel , 2004 .

[51]  Jørn Justesen,et al.  Performance of Product Codes and Related Structures with Iterated Decoding , 2011, IEEE Transactions on Communications.

[52]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[53]  Michael Lentmaier,et al.  Braided Block Codes , 2009, IEEE Transactions on Information Theory.

[54]  Hans-Andrea Loeliger,et al.  Codes and iterative decoding on general graphs , 1995, Eur. Trans. Telecommun..

[55]  Guy Even,et al.  LP Decoding of Regular LDPC Codes in Memoryless Channels , 2010, IEEE Transactions on Information Theory.

[56]  S. Kak Information, physics, and computation , 1996 .

[57]  I. Djordjevic,et al.  Achievable information rates for high-speed long-haul optical transmission , 2005, Journal of Lightwave Technology.

[58]  Michael Lentmaier,et al.  Terminated LDPC convolutional codes with thresholds close to capacity , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[59]  Nicolas Macris,et al.  Threshold Saturation in Spatially Coupled Constraint Satisfaction Problems , 2011, ArXiv.

[60]  Michael Lentmaier,et al.  On generalized low-density parity-check codes based on Hamming component codes , 1999, IEEE Communications Letters.

[61]  J. Boutros,et al.  Generalized low density (Tanner) codes , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[62]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.