Emerging Spintronics Phenomena and Applications

Development of future sensor, memory, and computing nanodevices based on novel physical concepts is one of the significant research endeavors in solid-state research. The field of spintronics is one such promising area of nanoelectronics which uses both the charge and spin of an electron for device operations. The advantage offered by the spin systems is in their non-volatility and low-power functionality. This article reviews the emerging spintronic phenomena and the research advancements in diverse spin-based applications. Spin devices and systems for logic, memories, emerging computing schemes, flexible electronics, and terahertz emitters are discussed in this report.

[1]  Fermi-level-dependent charge-to-spin current conversion by Dirac surface states of topological insulators , 2015, 1510.03572.

[2]  J. Park,et al.  Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers , 2017 .

[3]  E. Saitoh,et al.  Mechanism of Néel Order Switching in Antiferromagnetic Thin Films Revealed by Magnetotransport and Direct Imaging. , 2018, Physical review letters.

[4]  Slonczewski Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. , 1989, Physical review. B, Condensed matter.

[5]  N. Shimomura,et al.  From STT-MRAM to Voltage-Control Spintronics Memory (VoCSM) in Pursuit of Memory Systems with Lower Energy Consumption , 2019, Journal of Magnetics.

[6]  Vinod Kumar Joshi,et al.  Spintronics: A contemporary review of emerging electronics devices , 2016 .

[7]  Kang L. Wang,et al.  Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. , 2014, Nature materials.

[8]  F. Hellman,et al.  Spin-Orbit Torques in ferrimagnetic GdFeCo Alloys , 2016, 1605.09498.

[9]  William J. Gallagher,et al.  Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited) , 1999 .

[10]  J. Sinova,et al.  High Antiferromagnetic Domain Wall Velocity Induced by Néel Spin-Orbit Torques. , 2016, Physical review letters.

[11]  Bernard Rodmacq,et al.  Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. , 2010, Nature materials.

[12]  K. Roy,et al.  Spin-Based Neuron Model With Domain-Wall Magnets as Synapse , 2012, IEEE Transactions on Nanotechnology.

[13]  M. Tinkham,et al.  Direct electronic measurement of the spin Hall effect , 2006, Nature.

[14]  Hideo Ohno,et al.  Control of magnetism by electric fields. , 2015, Nature nanotechnology.

[15]  K. Xia,et al.  An all-metallic logic gate based on current-driven domain wall motion. , 2008, Nature nanotechnology.

[16]  Hong,et al.  Observation of a magnetic antiphase domain structure with long-range order in a synthetic Gd-Y superlattice. , 1986, Physical review letters.

[17]  F. Pan,et al.  Antidamping-Torque-Induced Switching in Biaxial Antiferromagnetic Insulators. , 2018, Physical review letters.

[18]  J. Sinova,et al.  Surprises from the spin Hall effect , 2017 .

[19]  Brian M. Sutton,et al.  Stochastic p-bits for Invertible Logic , 2016, 1610.00377.

[20]  Shaahin Angizi,et al.  AlignS: A Processing-In-Memory Accelerator for DNA Short Read Alignment Leveraging SOT-MRAM , 2019, 2019 56th ACM/IEEE Design Automation Conference (DAC).

[21]  L. You,et al.  Spin Hall effect clocking of nanomagnetic logic without a magnetic field. , 2014, Nature nanotechnology.

[22]  S. Pennycook,et al.  Current-induced magnetization switching in all-oxide heterostructures , 2019, Nature Nanotechnology.

[23]  Youguang Zhang,et al.  A Multilevel Cell STT-MRAM-Based Computing In-Memory Accelerator for Binary Convolutional Neural Network , 2018, IEEE Transactions on Magnetics.

[24]  D. Ralph,et al.  Spin Torque Study of the Spin Hall Conductivity and Spin Diffusion Length in Platinum Thin Films with Varying Resistivity. , 2015, Physical review letters.

[25]  J. Bass,et al.  Excitation of a magnetic multilayer by an electric current , 1998 .

[26]  Jong Min Lee,et al.  Direct visualization of current-induced spin accumulation in topological insulators , 2018, Nature Communications.

[27]  J. Henk,et al.  Edelstein effect in Weyl semimetals , 2018 .

[28]  G. Jakob,et al.  Efficient metallic spintronic emitters of ultrabroadband terahertz radiation , 2016 .

[29]  T. Low,et al.  Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1–x) films , 2018, Nature Materials.

[30]  Shaahin Angizi,et al.  IMCE: Energy-efficient bit-wise in-memory convolution engine for deep neural network , 2018, 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC).

[31]  Andrew D Kent,et al.  A new spin on magnetic memories. , 2015, Nature nanotechnology.

[32]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[33]  Uwe Bauer,et al.  Magneto-ionic control of interfacial magnetism. , 2014, Nature materials.

[34]  Engineering spin-orbit torque in Co/Pt multilayers with perpendicular magnetic anisotropy , 2015, 1510.00836.

[35]  Ralph,et al.  Current-induced switching of domains in magnetic multilayer devices , 1999, Science.

[36]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[37]  D. Ralph,et al.  Spin transfer torque devices utilizing the giant spin Hall effect of tungsten , 2012, 1208.1711.

[38]  S. Yuasa,et al.  A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy , 2016, Scientific Reports.

[39]  Yi Wang,et al.  Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin-orbit torques , 2017, Nature Communications.

[40]  Hyunsoo Yang,et al.  Anomalous Current-Induced Spin Torques in Ferrimagnets near Compensation. , 2017, Physical review letters.

[41]  Masaaki Tanaka,et al.  Efficient full spin–orbit torque switching in a single layer of a perpendicularly magnetized single-crystalline ferromagnet , 2019, Nature Communications.

[42]  R. Duine,et al.  New perspectives for Rashba spin-orbit coupling. , 2015, Nature materials.

[43]  Robert A. Buhrman,et al.  Spin-polarized current switching of a Co thin film nanomagnet , 2000 .

[44]  Yan Zhou,et al.  Magnetic skyrmion transistor: skyrmion motion in a voltage-gated nanotrack , 2015, Scientific Reports.

[45]  Kang L. Wang,et al.  Effect of the oxide layer on current-induced spin-orbit torques in Hf|CoFeB|MgO and Hf|CoFeB|TaOx structures , 2015 .

[46]  Eiji Saitoh,et al.  Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect , 2006 .

[47]  Jong-Ryul Jeong,et al.  Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures. , 2016, Nature nanotechnology.

[48]  J. Sinova,et al.  Spin Hall effects , 2015 .

[49]  D. Ralph,et al.  Interface-Induced Phenomena in Magnetism. , 2016, Reviews of modern physics.

[50]  Byong-Guk Park,et al.  Complementary logic operation based on electric-field controlled spin–orbit torques , 2018, Nature Electronics.

[51]  Hyunsoo Yang,et al.  Microscopic origin of spin-orbit torque in ferromagnetic heterostructures: A first-principles approach , 2020, Physical Review B.

[52]  Hyunsoo Yang,et al.  Angular and temperature dependence of current induced spin-orbit effective fields in Ta/CoFeB/MgO nanowires , 2014, Scientific reports.

[53]  Zhaohao Wang,et al.  PXNOR-BNN: In/With Spin-Orbit Torque MRAM Preset-XNOR Operation-Based Binary Neural Networks , 2019, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[54]  M. Gabureac,et al.  Magneto-Optical Detection of the Spin Hall Effect in Pt and W Thin Films. , 2017, Physical review letters.

[55]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[56]  Yang Zhang,et al.  Strong Intrinsic Spin Hall Effect in the TaAs Family of Weyl Semimetals. , 2016, Physical review letters.

[57]  I. Turek,et al.  Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance , 2017, Nature Communications.

[58]  Kyung-Jin Lee,et al.  Spin wave nonreciprocity for logic device applications , 2013, Scientific Reports.

[59]  A. Fert,et al.  Extrinsic spin Hall effect induced by iridium impurities in copper. , 2011, Physical review letters.

[60]  Q. Gibson,et al.  Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. , 2014, Nature materials.

[61]  Baoshun Zhang,et al.  Voltage-Controlled Spintronic Stochastic Neuron Based on a Magnetic Tunnel Junction , 2019, Physical Review Applied.

[62]  Hyun Cheol Koo,et al.  Control of Spin Precession in a Spin-Injected Field Effect Transistor , 2009, Science.

[63]  S. Parkin,et al.  Role of transparency of platinum–ferromagnet interfaces in determining the intrinsic magnitude of the spin Hall effect , 2015, 1504.07929.

[64]  Merle,et al.  Ultrafast spin dynamics in ferromagnetic nickel. , 1996, Physical review letters.

[65]  Damien Querlioz,et al.  Neuromorphic computing with nanoscale spintronic oscillators , 2017, Nature.

[66]  J. Sinova,et al.  Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems , 2018, Reviews of Modern Physics.

[67]  Simone Finizio,et al.  Magnetic skyrmion artificial synapse for neuromorphic computing , 2019, ArXiv.

[68]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[69]  Yang Liu,et al.  High‐Performance THz Emitters Based on Ferromagnetic/Nonmagnetic Heterostructures , 2016, Advanced materials.

[70]  B. Diény,et al.  First-principles investigation of the very large perpendicular magnetic anisotropy at Fe|MgO and Co|MgO interfaces , 2010, 1011.5667.

[71]  M. Stiles,et al.  Spin currents and spin–orbit torques in ferromagnetic trilayers , 2018, Nature Materials.

[72]  Yang Liu,et al.  Field-Free Spin-Orbit Torque Switching from Geometrical Domain-Wall Pinning. , 2018, Nano letters.

[73]  Shaahin Angizi,et al.  GraphS: A Graph Processing Accelerator Leveraging SOT-MRAM , 2019, 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[74]  S. Parkin,et al.  Handbook of magnetism and advanced magnetic materials , 2007 .

[75]  V. M. Edelstein Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems , 1990 .

[76]  C. Ross,et al.  Current-Induced Domain Wall Motion in a Compensated Ferrimagnet. , 2018, Physical review letters.

[77]  Role of spin mixing conductance in spin pumping: Enhancement of spin pumping efficiency in Ta/Cu/Py structures , 2013, 1311.6098.

[78]  Hyunsoo Yang,et al.  Terahertz Emission from Compensated Magnetic Heterostructures , 2018, Advanced Optical Materials.

[79]  Oliver G. Schmidt,et al.  Towards Flexible Magnetoelectronics: Buffer‐Enhanced and Mechanically Tunable GMR of Co/Cu Multilayers on Plastic Substrates , 2008 .

[80]  Room-Temperature Giant Charge-to-Spin Conversion at the SrTiO3-LaAlO3 Oxide Interface. , 2017, Nano letters.

[81]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[82]  Yoshihiko Horio,et al.  Analogue spin–orbit torque device for artificial-neural-network-based associative memory operation , 2016 .

[83]  Paolo Vavassori,et al.  Flexible spintronic devices on Kapton , 2014 .

[84]  Hyunsoo Yang,et al.  Hf thickness dependence of spin-orbit torques in Hf/CoFeB/MgO heterostructures , 2016 .

[85]  Suman Datta,et al.  The era of hyper-scaling in electronics , 2018, Nature Electronics.

[86]  Richard Joseph Gambino,et al.  Amorphous metallic films for bubble domain applications , 1973 .

[87]  R. Wiesendanger Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics , 2016 .

[88]  D. Ralph,et al.  Thickness dependence of spin-orbit torques generated by WTe2 , 2017, 1707.03757.

[89]  Zhaohao Wang,et al.  Field-free spin–orbit-torque switching of perpendicular magnetization aided by uniaxial shape anisotropy , 2019, Nanotechnology.

[90]  A. Hoffmann Spin Hall Effects in Metals , 2013, IEEE Transactions on Magnetics.

[91]  Rahul Mishra,et al.  Oxygen-Migration-Based Spintronic Device Emulating a Biological Synapse , 2019, Physical Review Applied.

[92]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[93]  V. Subramanian,et al.  Flexible spin-orbit torque devices , 2015 .

[94]  S. Urazhdin,et al.  Magnetic nano-oscillator driven by pure spin current. , 2012, Nature materials.

[95]  A. Fert,et al.  Extrinsic spin Hall effects measured with lateral spin valve structures , 2014, 1401.3445.

[96]  Kaushik Roy,et al.  Spin-Orbit Torque Induced Spike-Timing Dependent Plasticity , 2014, ArXiv.

[97]  M. Stiles,et al.  Synthetic antiferromagnetic spintronics , 2018, Nature Physics.

[98]  Robert A. Buhrman,et al.  Enhancement of the anti-damping spin torque efficacy of platinum by interface modification , 2015 .

[99]  Shoji Ikeda,et al.  Three terminal magnetic tunnel junction utilizing the spin Hall effect of iridium-doped copper , 2013 .

[100]  Robert A. Buhrman,et al.  Enhanced spin Hall torque efficiency in Pt100−xAlx and Pt100−xHfx alloys arising from the intrinsic spin Hall effect , 2016 .

[101]  Shufeng Zhang,et al.  Reversible control of Co magnetism by voltage-induced oxidation. , 2014, Physical review letters.

[102]  Hyunsoo Yang,et al.  Spin‐Orbit Torque Magnetization Switching in MoTe2/Permalloy Heterostructures , 2020, Advanced materials.

[103]  Yan Zhou,et al.  Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions , 2014, Scientific Reports.

[104]  S. Vélez,et al.  Absence of detectable current-induced magneto-optical Kerr effects in Pt, Ta, and W , 2016 .

[105]  Ronger Zheng,et al.  Powerful and Tunable THz Emitters Based on the Fe/Pt Magnetic Heterostructure , 2016, 1607.02814.

[106]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[107]  S. Auffret,et al.  Penetration depth of transverse spin current in ultrathin ferromagnets. , 2012, Physical review letters.

[108]  Grünberg,et al.  Novel magnetoresistance effect in layered magnetic structures: Theory and experiment. , 1990, Physical review. B, Condensed matter.

[109]  Bin Gao,et al.  Fully hardware-implemented memristor convolutional neural network , 2020, Nature.

[110]  Zhang,et al.  Spin hall effect in the presence of spin diffusion , 2000, Physical review letters.

[111]  Characterization of magnetostatic surface spin waves in magnetic thin films: evaluation for microelectronic applications , 2013, 1301.5395.

[112]  Tristan Matalla-Wagner,et al.  Electrical Switching of Antiferromagnetic Mn2Au and the Role of Thermal Activation , 2017, Physical Review Applied.

[113]  S. Eisebitt,et al.  Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet , 2018, Nature Nanotechnology.

[114]  S. Huang,et al.  Absence of Evidence of Electrical Switching of the Antiferromagnetic Néel Vector. , 2019, Physical review letters.

[115]  Laura Scheuer,et al.  Optimized Spintronic Terahertz Emitters Based on Epitaxial Grown Fe/Pt Layer Structures , 2017, Scientific Reports.

[116]  T. Miyazaki,et al.  Giant magnetic tunneling e ect in Fe/Al2O3/Fe junction , 1995 .

[117]  Spin-Hall insulator. , 2004, Physical review letters.

[118]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[119]  Yizhou Liu,et al.  MRAM gets closer to the core , 2019 .

[120]  S. Roche,et al.  Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures , 2019, Nature Materials.

[121]  C. Pai,et al.  A Comparative Study on Spin-Orbit Torque Efficiencies from W/Ferromagntic and W/Ferrimagnetic Heterostructures. , 2017, 2018 IEEE International Magnetic Conference (INTERMAG).

[122]  R. Raimondi,et al.  Optimal Charge-to-Spin Conversion in Graphene on Transition-Metal Dichalcogenides. , 2017, Physical review letters.

[123]  M. Kostylev,et al.  Realization of spin-wave logic gates , 2007, 0711.4720.

[124]  Determination of intrinsic spin Hall angle in Pt , 2014, 1410.1601.

[125]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[126]  Supriyo Datta,et al.  Integer factorization using stochastic magnetic tunnel junctions , 2019, Nature.

[127]  Robert Schneider,et al.  Magnetic-Field-Dependent THz Emission of Spintronic TbFe/Pt Layers , 2018, ACS Photonics.

[128]  Jong Min Lee,et al.  Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets , 2020 .

[129]  Hyunsoo Yang,et al.  All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures , 2019, Nature Nanotechnology.

[130]  Byong‐Guk Park,et al.  Enhanced spin–orbit torque via interface engineering in Pt/CoFeB/MgO heterostructures , 2018, APL Materials.

[131]  이정훈,et al.  First-principles investigation of the very large perpendicular magnetic anisotropy at Fe , 2011 .

[132]  Kang L. Wang,et al.  Electric-field guiding of magnetic skyrmions , 2015, 1505.03972.

[133]  G. Xiao,et al.  Beta (β) tungsten thin films: Structure, electron transport, and giant spin Hall effect , 2015 .

[134]  R. Hey,et al.  Current-induced spin polarization at a single heterojunction , 2004 .

[135]  Strain-enhanced tunneling magnetoresistance in MgO magnetic tunnel junctions , 2014, Scientific reports.

[136]  G. Beach,et al.  Enhanced Spin-Orbit Torques in Pt/Co/Ta Heterostructures , 2014 .

[137]  Mathon,et al.  Oscillations of the exchange in magnetic multilayers as an analog of de Haas-van Alphen effect. , 1991, Physical review letters.

[138]  H. Ohno,et al.  Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. , 2012, Nature materials.

[139]  J. Triscone,et al.  Efficient spin-to-charge conversion in the 2D electron liquid at the LAO/STO interface , 2016 .

[140]  Hyunsoo Yang,et al.  Current‐Enhanced Broadband THz Emission from Spintronic Devices , 2018, Advanced Optical Materials.

[141]  Matthew Brahlek,et al.  Observation of inverse spin hall effect in bismuth selenide , 2014 .

[142]  M. Battiato,et al.  Superdiffusive spin transport as a mechanism of ultrafast demagnetization. , 2010, Physical review letters.

[143]  Gang Xiong,et al.  Submicrometer Ferromagnetic NOT Gate and Shift Register , 2002, Science.

[144]  Yan Zhou,et al.  A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry , 2014, Nature Communications.

[145]  M. Kostylev,et al.  Spin-wave logical gates , 2005 .

[146]  Hyunsoo Yang,et al.  Enhanced Spin-Orbit Torque via Modulation of Spin Current Absorption. , 2016, Physical review letters.

[147]  H. Ohno,et al.  Artificial Neuron and Synapse Realized in an Antiferromagnet/Ferromagnet Heterostructure Using Dynamics of Spin–Orbit Torque Switching , 2019, Advanced materials.

[148]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[149]  Kaushik Roy,et al.  Proposal for an All-Spin Artificial Neural Network: Emulating Neural and Synaptic Functionalities Through Domain Wall Motion in Ferromagnets , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[150]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[151]  Jong Min Lee,et al.  Giant nonreciprocal emission of spin waves in Ta/Py bilayers , 2016, Science Advances.

[152]  Shan X. Wang,et al.  Spin-orbit torque magnetoresistive random-access memory (SOT-MRAM) , 2019, Advances in Non-Volatile Memory and Storage Technology.

[153]  Hyunsoo Yang,et al.  Spin-orbit-torque engineering via oxygen manipulation. , 2015, Nature nanotechnology.

[154]  Hyunsoo Yang,et al.  Extrinsic Spin Hall Effect in Cu 1 -x Pt x , 2017 .

[155]  Qiang Zhang,et al.  Evidence for topological type-II Weyl semimetal WTe2 , 2017, Nature Communications.

[156]  Hyunsoo Yang,et al.  Spin orbit torque driven magnetization switching with sputtered Bi2Se3 spin current source , 2019, Journal of Physics D: Applied Physics.

[157]  T. Ono,et al.  Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. , 2017, Nature materials.

[158]  J. S. Lee,et al.  Spin-transfer torque generated by a topological insulator , 2014, Nature.

[159]  Hyunsoo Yang,et al.  Long spin coherence length and bulk-like spin–orbit torque in ferrimagnetic multilayers , 2018, Nature Materials.

[160]  A. Fert,et al.  Giant spin Hall effect induced by skew scattering from bismuth impurities inside thin film CuBi alloys. , 2012, Physical review letters.

[161]  Kaushik Roy,et al.  Encoding Neural and Synaptic Functionalities in Electron Spin: A Pathway to Efficient Neuromorphic Computing , 2017, ArXiv.

[162]  Jingsheng Chen,et al.  Temperature‐Dependent Spin–Orbit Torques in Perpendicular Magnetic [Co/Ni]N/TbCo Composite Films , 2019, Advanced Electronic Materials.

[163]  F. Freimuth,et al.  Terahertz spin current pulses controlled by magnetic heterostructures. , 2012, Nature nanotechnology.

[164]  A. Gangulee,et al.  Magnetization and magnetic anisotropy in evaporated GdCo amorphous films , 1976 .

[165]  D. Ralph,et al.  Dependence of the efficiency of spin Hall torque on the transparency of Pt/ferromagnetic layer interfaces , 2014, 1411.3379.

[166]  Sachin S. Sapatnekar,et al.  A DNA Read Alignment Accelerator Based on Computational RAM , 2020, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits.

[167]  Kang L. Wang,et al.  Strong Electrical Manipulation of Spin–Orbit Torque in Ferromagnetic Heterostructures , 2016 .

[168]  D. Chi,et al.  Far out-of-equilibrium spin populations trigger giant spin injection into atomically thin MoS2 , 2019, Nature Physics.

[169]  Hyung-jun Kim,et al.  Electrical detection of coherent spin precession using the ballistic intrinsic spin Hall effect. , 2015, Nature nanotechnology.

[170]  C. A. Ross,et al.  Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls , 2016, Nature Communications.

[171]  Hyunsoo Yang,et al.  Electric-field control of spin accumulation direction for spin-orbit torques , 2019, Nature Communications.

[172]  Kang L. Wang,et al.  Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. , 2013, Nature nanotechnology.

[173]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[174]  J. Pearson,et al.  Research Update: Spin transfer torques in permalloy on monolayer MoS2 , 2016 .

[175]  S. Datta,et al.  Proposal for an all-spin logic device with built-in memory. , 2010, Nature nanotechnology.

[176]  Damien Querlioz,et al.  Vowel recognition with four coupled spin-torque nano-oscillators , 2017, Nature.

[177]  J. Bokor,et al.  Ultrafast magnetization reversal by picosecond electrical pulses , 2016, Science Advances.

[178]  R. Cowburn,et al.  Writing and erasing data in magnetic domain wall logic systems , 2006 .

[179]  Hyunsoo Yang,et al.  Recent advances in spin-orbit torques: Moving towards device applications , 2018, Applied Physics Reviews.

[180]  Yu Fu,et al.  Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. , 2016, Nature materials.

[181]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[182]  Caroline A Ross,et al.  Current-induced switching in a magnetic insulator. , 2017, Nature materials.

[183]  Caihua Wan,et al.  Programmable Spin Logic Based on Spin Hall Effect in a Single Device , 2017 .

[184]  Supriyo Datta,et al.  Intrinsic optimization using stochastic nanomagnets , 2016, Scientific Reports.

[185]  D. Ralph,et al.  Spin-Orbit Torques in Heavy-Metal-Ferromagnet Bilayers with Varying Strengths of Interfacial Spin-Orbit Coupling. , 2019, Physical review letters.

[186]  J. Sinova,et al.  Relativistic Néel-order fields induced by electrical current in antiferromagnets. , 2014, Physical review letters.

[187]  J. C. Sloncxewski,et al.  Current-driven excitation of magnetic multilayers , 2003 .

[188]  Kang L. Wang,et al.  Current-induced spin-orbit torque switching of perpendicularly magnetized Hf|CoFeB|MgO and Hf|CoFeB|TaOx structures , 2015 .

[189]  Hyunsoo Yang,et al.  Large spin-orbit torques in Pt/Co-Ni/W heterostructures , 2016 .

[190]  A. Fert,et al.  Magnetic skyrmions: advances in physics and potential applications , 2017 .

[191]  Yi Wang,et al.  Ultrafast Spin‐to‐Charge Conversion at the Surface of Topological Insulator Thin Films , 2018, Advanced materials.

[192]  Schreiber,et al.  Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. , 1986, Physical review letters.

[193]  T. Jungwirth,et al.  Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility , 2017, Nature Communications.

[194]  Dimitrie Culcer,et al.  Universal intrinsic spin Hall effect. , 2004, Physical review letters.

[195]  Luqiao Liu,et al.  Room-Temperature Spin-Orbit Torque Switching Induced by a Topological Insulator. , 2017, Physical review letters.

[196]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[197]  Ming-Yang Li,et al.  Strong Rashba-Edelstein Effect-Induced Spin-Orbit Torques in Monolayer Transition Metal Dichalcogenide/Ferromagnet Bilayers. , 2016, Nano letters.

[198]  M. Chou,et al.  Spin texture in type-II Weyl semimetal WTe 2 , 2016, 1606.00085.

[199]  Daniil Karnaushenko,et al.  Printable Giant Magnetoresistive Devices , 2012, Advanced materials.

[200]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[201]  Parkin,et al.  Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. , 1990, Physical review letters.

[202]  Observation of inverse Edelstein effect in Rashba-split 2DEG between SrTiO3 and LaAlO3 at room temperature , 2016, Science Advances.

[203]  G. Vignale,et al.  Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states , 2017, 1706.09589.

[204]  Hyunsoo Yang,et al.  Topological Surface States Originated Spin-Orbit Torques in Bi(2)Se(3). , 2015, Physical review letters.

[205]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[206]  B. Jonker,et al.  Optical detection of spin Hall effect in metals , 2014 .

[207]  R. Q. Zhang,et al.  Spin-orbit torque in a completely compensated synthetic antiferromagnet , 2018, Physical Review B.

[208]  T. Silva,et al.  Observation of spin-orbit effects with spin rotation symmetry , 2017, Nature Communications.

[209]  S. Parkin,et al.  Flexible giant magnetoresistance sensors , 1996 .

[210]  D. Ralph,et al.  Fast Low-Current Spin-Orbit-Torque Switching of Magnetic Tunnel Junctions through Atomic Modifications of the Free-Layer Interfaces , 2017, 1710.06391.

[211]  H. Ohldag,et al.  Anomalous spin–orbit torques in magnetic single-layer films , 2019, Nature Nanotechnology.

[212]  E. Rashba,et al.  Properties of a 2D electron gas with lifted spectral degeneracy , 1984 .

[213]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[214]  K. Ando,et al.  Intrinsic Spin-Orbit Torque Arising from the Berry Curvature in a Metallic-Magnet/Cu-Oxide Interface. , 2018, Physical review letters.

[215]  Mo Li,et al.  High Performance MgO-barrier Magnetic Tunnel Junctions for Flexible and Wearable Spintronic Applications , 2017, Scientific Reports.

[216]  A. Ando,et al.  A flexible giant magnetoresistive device for sensing strain direction , 2018 .

[217]  R. Wu,et al.  Absence of detectable MOKE signals from spin Hall effect in metals , 2017 .

[218]  A. Thomas,et al.  The Memristive Magnetic Tunnel Junction as a Nanoscopic Synapse‐Neuron System , 2012, Advanced materials.

[219]  S. Parkin,et al.  Domain-wall velocities of up to 750 m s(-1) driven by exchange-coupling torque in synthetic antiferromagnets. , 2015, Nature nanotechnology.

[220]  J. H. Franken,et al.  Shift registers based on magnetic domain wall ratchets with perpendicularly anisotrpoy , 2012 .

[221]  Supriyo Datta,et al.  p-Bits for Probabilistic Spin Logic , 2018, Applied Physics Reviews.

[222]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[223]  Biaxial strain effect of spin dependent tunneling in MgO magnetic tunnel junctions , 2012, 1208.3525.

[224]  Large voltage-induced modification of spin-orbit torques in Pt/Co/GdOx , 2014, 1411.6153.

[225]  Petr Nemec,et al.  Spin Hall Effect Transistor , 2010, Science.

[226]  Wei Han,et al.  Enhanced spin–orbit torques by oxygen incorporation in tungsten films , 2016, Nature Communications.

[227]  Kinder,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[228]  F. Pan,et al.  Electric field control of Néel spin–orbit torque in an antiferromagnet , 2019, Nature Materials.

[229]  R. Schneider,et al.  Spintronic GdFe/Pt THz emitters , 2019, Applied Physics Letters.

[230]  S. Datta,et al.  Low-Barrier Nanomagnets as p-Bits for Spin Logic , 2016, IEEE Magnetics Letters.

[231]  Voltage Control of Magnetic Anisotropy through Ionic Gel Gating for Flexible Spintronics. , 2018, ACS applied materials & interfaces.

[232]  D. Lacour,et al.  Spin-orbit torque-induced switching in ferrimagnetic alloys: Experiments and modeling , 2018 .

[233]  Y. Monnai,et al.  Current-induced magnetization switching using an electrically insulating spin-torque generator , 2017, Science Advances.

[234]  M. Klaui,et al.  Imaging of current induced Néel vector switching in antiferromagnetic Mn2Au , 2019, Physical Review B.

[235]  I. Miron,et al.  Current-induced spin–orbit torques , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[236]  A. Fert,et al.  Large enhancement of the spin Hall effect in Au by side-jump scattering on Ta impurities , 2017, 1708.09214.

[237]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[238]  Zhiming Yu,et al.  Spin-momentum locking and spin-orbit torques in magnetic nano-heterojunctions composed of Weyl semimetal WTe2 , 2018, Nature Communications.

[239]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[240]  Motohiko Ezawa,et al.  Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[241]  Ralph,et al.  Current-driven magnetization reversal and spin-wave excitations in Co /Cu /Co pillars , 1999, Physical review letters.

[242]  A. Rushforth,et al.  Electrical switching of an antiferromagnet , 2015, Science.

[243]  M. Burghard,et al.  Spin Hall photoconductance in a three-dimensional topological insulator at room temperature , 2017, Nature Communications.

[244]  D. D. Awschalom,et al.  Observation of the Spin Hall Effect in Semiconductors , 2004, Science.

[245]  Jianshi Tang,et al.  Electric-field control of spin-orbit torque in a magnetically doped topological insulator. , 2015, Nature nanotechnology.

[246]  Jianping Wang,et al.  Giant Spin Pumping and Inverse Spin Hall Effect in the Presence of Surface and Bulk Spin-Orbit Coupling of Topological Insulator Bi2Se3. , 2015, Nano letters.

[247]  K. Ando,et al.  Giant spin-torque generation by heavily oxidized Pt , 2018, Physical Review B.

[248]  Michel Dyakonov,et al.  Current-induced spin orientation of electrons in semiconductors , 1971 .

[249]  Ji-won Son,et al.  Fast magneto-ionic switching of interface anisotropy using yttria-stabilized zirconia gate oxide. , 2020, Nano letters.

[250]  Takuo Ohkochi,et al.  Spin torque control of antiferromagnetic moments in NiO , 2017, Scientific Reports.

[251]  S. Parkin,et al.  Magnetic Tunnel Junctions , 2007 .

[252]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[253]  Continuous Tuning of the Magnitude and Direction of Spin‐Orbit Torque Using Bilayer Heavy Metals , 2016, 1702.00147.

[254]  N. Khang,et al.  A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching , 2017, Nature Materials.

[255]  K. Ando,et al.  Spin–torque generator engineered by natural oxidation of Cu , 2016, Nature Communications.

[256]  Luqiao Liu,et al.  Spin-Orbit Torque Efficiency in Compensated Ferrimagnetic Cobalt-Terbium Alloys , 2016 .

[257]  Sumit Dutta,et al.  Magnetic domain wall based synaptic and activation function generator for neuromorphic accelerators , 2019, Nano letters.

[258]  Mark Saeys,et al.  Flexible MgO Barrier Magnetic Tunnel Junctions , 2016, Advanced materials.

[259]  Anders Eklund,et al.  Spin-Torque and Spin-Hall Nano-Oscillators , 2015, Proceedings of the IEEE.

[260]  R. Cowburn,et al.  Toward Flexible Spintronics: Perpendicularly Magnetized Synthetic Antiferromagnetic Thin Films and Nanowires on Polyimide Substrates , 2016 .

[261]  Uwe Bauer,et al.  Voltage-controlled domain wall traps in ferromagnetic nanowires. , 2013, Nature nanotechnology.

[262]  K. Hasegawa,et al.  Enhancement of spin-orbit torque by inserting CoOx layer into Co/Pt interface , 2018, Physical Review B.

[263]  Tobias Kampfrath,et al.  Terahertz electrical writing speed in an antiferromagnetic memory , 2018, Science Advances.

[264]  M. Murnane,et al.  Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current , 2012, Nature Communications.

[265]  Ye. Pogoryelov,et al.  Spin Torque–Generated Magnetic Droplet Solitons , 2013, Science.

[266]  Robert A. Buhrman,et al.  Highly Efficient Spin-Current Generation by the Spin Hall Effect in Au1−xPtx , 2018, Physical Review Applied.

[267]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[268]  Peng Li,et al.  Temperature dependence of spin-orbit torques in Cu-Au alloys , 2017 .

[269]  Hyunsoo Yang,et al.  Current-driven spin orbit field in LaAlO3/SrTiO3 heterostructures , 2014 .

[270]  X. Dai,et al.  Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs , 2015, 1503.01304.

[271]  Daniil Karnaushenko,et al.  Stretchable magnetoelectronics. , 2011, Nano letters.

[272]  J. Hirsch Spin Hall Effect , 1999, cond-mat/9906160.

[273]  Mahdi Jamali,et al.  Spin-orbit torques in Co/Pd multilayer nanowires. , 2013, Physical review letters.

[274]  G. Dresselhaus Spin-Orbit Coupling Effects in Zinc Blende Structures , 1955 .

[275]  An Chen,et al.  Hybrid Spin-CMOS Polymorphic Logic Gate With Application in In-Memory Computing , 2020, IEEE Transactions on Magnetics.

[276]  Ronald F. DeMara,et al.  Leveraging Stochasticity for In Situ Learning in Binarized Deep Neural Networks , 2019, Computer.

[277]  Joo-Von Kim Spin-Torque Oscillators , 2012 .

[278]  Hyunsoo Yang,et al.  Nonlinear magnetotransport shaped by Fermi surface topology and convexity , 2019, Nature Communications.

[279]  A. Gossard,et al.  Current-induced spin polarization in strained semiconductors. , 2004, Physical review letters.

[280]  T. Ono,et al.  Temperature dependence of spin-orbit effective fields in Pt/GdFeCo bilayers , 2017, 1703.00995.

[281]  F. Freimuth,et al.  Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. , 2013, Nature nanotechnology.

[282]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.