Numerical Solution of Optimal Control Problems with Discrete-Valued System Parameters

In this paper, we propose a new approach to solve a class of optimal control problems involving discrete-valued system parameters. The basic idea is to formulate a problem of this type as a combination of a discrete global optimization problem and a standard optimal control problem, and then solve it using a two-level approach. Numerical results show that the proposed method is efficient and capable of finding optimal or near optimal solutions.

[1]  Alexander H. G. Rinnooy Kan,et al.  Stochastic methods for global optimization , 1984 .

[2]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[3]  Ehl Emile Aarts,et al.  Simulated annealing and Boltzmann machines , 2003 .

[4]  Kok Lay Teo,et al.  MISER3: solving optimal control problems—an update , 1991 .

[5]  D. Stewart A numerical algorithm for optimal control problems with switching costs , 1992, The Journal of the Australian Mathematical Society Series B Applied Mathematics.

[6]  K. Teo,et al.  The control parameterization enhancing transform for constrained optimal control problems , 1999, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[7]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[8]  P. Billingsley,et al.  Probability and Measure , 1980 .

[9]  Michael Dinkelmann,et al.  Application of automatic differentiation to optimal control problems , 1994 .

[10]  C. Storey,et al.  Aspiration Based Simulated Annealing Algorithm , 1997, J. Glob. Optim..

[11]  Panos M. Pardalos,et al.  Recent Advances in Global Optimization , 1991 .

[12]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[13]  Kok Lay Teo,et al.  Control parametrization enhancing technique for optimal discrete-valued control problems , 1999, Autom..

[14]  D. Clements,et al.  Optimal control computation for nonlinear time-lag systems , 1985 .

[15]  Kok Lay Teo,et al.  Optimal Control of Drug Administration in Cancer Chemotherapy , 1993 .

[16]  Jon G. Rokne,et al.  New computer methods for global optimization , 1988 .

[17]  H. Sirisena Computation of optimal controls using a piecewise polynomial parameterization , 1973 .

[18]  Phil Howlett,et al.  Optimal strategies for the control of a train , 1996, Autom..

[19]  Patrick Billingsley,et al.  Probability and Measure. , 1986 .

[20]  D. Mayne,et al.  A feasible directions algorithm for optimal control problems with control and terminal inequality constraints , 1977 .

[21]  Peter Deuflhard,et al.  OCCAL: a mixed symbolic-numeric Optimal Control CALculator , 1994 .

[22]  Elijah Polak,et al.  Computational methods in optimization , 1971 .

[23]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[24]  Efstratios N. Pistikopoulos,et al.  Towards an efficient numerical procedure for mixed integer optimal control , 1997 .

[25]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[26]  Volker Rehbock,et al.  Multilevel Optimization of Optimal Control Problems , 2001 .