Surface-electrode architecture for ion-trap quantum information processing

We investigate a surface-mounted electrode geometry for miniature linear radio frequencyPaul ion traps. The electrodes reside in a single plane on a substrate, and the pseudopotentialminimum of the trap is located above the substrate at a distance on the orderof the electrodes' lateral extent or separation. This architecture provides the possibilityto apply standard microfabrication principles to the construction of multiplexed iontraps, which may be of particular importance in light of recent proposals for large-scalequantum computation based on individual trapped ions.

[1]  Manuel Vogel,et al.  A planar Penning trap , 2005 .

[2]  Tilo Steinmetz,et al.  Coherence in microchip traps. , 2004, Physical review letters.

[3]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[4]  Herbert Walther,et al.  Quantum optics: The atomic nanoscope , 2001, Nature.

[5]  J. Hughes,et al.  Transport of Quantum States and Separation of Ions in a Dual Rf Ion Trap * , 2002 .

[6]  Maier,et al.  Controlling cold atoms using nanofabricated surfaces: atom chips , 1999, Physical review letters.

[7]  H. Dehmelt,et al.  Radiofrequency Spectroscopy of Stored Ions I: Storage , 1968 .

[8]  D. Stick,et al.  Planar ion trap geometry for microfabrication , 2004 .

[9]  L. Maleki,et al.  New ion trap for frequency standard applications , 1989 .

[10]  David J. Wineland,et al.  Laser cooling of ions stored in harmonic and Penning traps , 1982 .

[11]  Boris B. Blinov,et al.  Zero-point cooling and low heating of trapped {sup 111}Cd{sup +} ions , 2004, quant-ph/0404142.

[12]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[13]  Boris B. Blinov,et al.  Sympathetic Cooling of Trapped Cd , 2002 .

[14]  Dana Joy Berkeland,et al.  Linear Paul trap for strontium ions , 2002 .

[15]  E. Knill,et al.  Recent experiments in trapped-ion quantum information processing at NIST , 2006, International Conference on Coherent and Nonlinear Optics.

[16]  R. Gomer,et al.  Field Emission and Field Ionization , 1961 .

[17]  F. Mintert,et al.  Ion-trap quantum logic using long-wavelength radiation. , 2001, Physical review letters.

[18]  W. Paul Electromagnetic traps for charged and neutral particles , 1990 .

[19]  Lute Maleki,et al.  Simple analytic potentials for linear ion traps , 1990 .

[20]  M. Wilkens,et al.  Loss and heating of particles in small and noisy traps , 1999, quant-ph/9906128.

[21]  F. Schmidt-Kaler,et al.  Ion strings for quantum gates , 1998 .

[22]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[23]  R. F. Wuerker,et al.  Electrodynamic Containment of Charged Particles , 1959 .

[24]  Ifan G. Hughes,et al.  REVIEW ARTICLE: Magnetic atom optics: mirrors, guides, traps, and chips for atoms , 1999 .

[25]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[26]  J. P. Schiffer,et al.  Ion crystals in a linear Paul trap , 1998 .

[27]  C. F. Roos,et al.  Sympathetic ground-state cooling and coherent manipulation with two-ion crystals , 2000, quant-ph/0009031.

[28]  T. W. Hänsch,et al.  Applications of Integrated Magnetic , 2001 .

[29]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[30]  M Drewsen,et al.  Structural properties of two-component coulomb crystals in linear paul traps. , 2001, Physical review letters.

[31]  P. C. Haljan,et al.  04 04 14 2 v 1 2 5 A pr 2 00 4 Zero-Point cooling and low heating of trapped 111 Cd + ions , 2004 .

[32]  David Kielpinski,et al.  Entanglement and decoherence in a trapped-ion quantum register , 2001 .

[33]  R. DeVoe,et al.  Elliptical ion traps and trap arrays for quantum computation , 1998 .

[34]  D. M. Lucas,et al.  Precision Measurement of the Lifetime of the 3d 2 D 5/2 state in 40 Ca + , 2000 .

[35]  David J. Wineland,et al.  Principles of the stored ion calorimeter , 1975 .

[36]  P Zoller,et al.  Coupled ion-nanomechanical systems. , 2004, Physical review letters.

[37]  Benjamin Lev Fabrication of micro-magnetic traps for cold neutral atoms , 2003, Quantum Inf. Comput..

[38]  Christoph Becher,et al.  Control and Measurement of Three-Qubit Entangled States , 2004, Science.

[39]  Wineland,et al.  Ionic crystals in a linear Paul trap. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[40]  Dekker,et al.  Guiding neutral atoms on a chip , 1999, Physical review letters.

[41]  J. Britton,et al.  Sympathetic cooling of 9 Be + and 24 Mg + for quantum logic , 2003 .

[42]  L. Deslauriers,et al.  Sympathetic cooling of trapped Cd + isotopes , 2002 .

[43]  Dana Z. Anderson,et al.  Magnetic switch for integrated atom optics , 2001 .

[44]  Andrew Steane,et al.  Electric Octopole Configurations for Fast Separation of Trapped Ions , 2004 .

[45]  Andrew M. Steane,et al.  Electrode configurations for fast separation of trapped ions , 2004, Quantum Inf. Comput..

[46]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[47]  B. A. Sexton,et al.  Magnetic mirrors with micron-scale periodicities for slowly moving neutral atoms , 1999 .

[48]  David J. Wineland,et al.  Towards quantum information with trapped ions at NIST , 2003 .

[49]  Herbert Walther,et al.  Novel miniature ion traps , 1993 .

[50]  David J. Wineland,et al.  Sympathetic cooling of 9Be+ and 24Mg+ for quantum logic , 2003 .