Approximate Graph Edit Distance in Quadratic Time

Graph edit distance is one of the most flexible and general graph matching models available. The major drawback of graph edit distance, however, is its computational complexity that restricts its applicability to graphs of rather small size. Recently, the authors of the present paper introduced a general approximation framework for the graph edit distance problem. The basic idea of this specific algorithm is to first compute an optimal assignment of independent local graph structures (including substitutions, deletions, and insertions of nodes and edges). This optimal assignment is complete and consistent with respect to the involved nodes of both graphs and can thus be used to instantly derive an admissible (yet suboptimal) solution for the original graph edit distance problem in <inline-formula><tex-math notation="LaTeX">$O(n^3)$</tex-math><alternatives><mml:math><mml:mrow><mml:mi>O</mml:mi><mml:mo>(</mml:mo><mml:msup><mml:mi>n</mml:mi><mml:mn>3</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="riesen-ieq1-2478463.gif"/></alternatives></inline-formula> time. For large scale graphs or graph sets, however, the cubic time complexity may still be too high. Therefore, we propose to use suboptimal algorithms with quadratic rather than cubic time for solving the basic assignment problem. In particular, the present paper introduces five different greedy assignment algorithms in the context of graph edit distance approximation. In an experimental evaluation, we show that these methods have great potential for further speeding up the computation of graph edit distance while the approximated distances remain sufficiently accurate for graph based pattern classification.

[1]  Eranda C Ela,et al.  Assignment Problems , 1964, Comput. J..

[2]  Josef Kittler,et al.  Using Graph Search Techniques for Contextual Colour Retrieval , 2002, SSPR/SPR.

[3]  Pierre-Antoine Champin,et al.  Measuring the Similarity of Labeled Graphs , 2003, ICCBR.

[4]  Andrea Torsello,et al.  Polynomial-time metrics for attributed trees , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Kaspar Riesen,et al.  Approximate graph edit distance computation by means of bipartite graph matching , 2009, Image Vis. Comput..

[6]  Francesc Serratosa,et al.  Fast computation of Bipartite graph matching , 2014, Pattern Recognit. Lett..

[7]  Tatsuya Akutsu,et al.  Graph Kernels for Molecular Structure-Activity Relationship Analysis with Support Vector Machines , 2005, J. Chem. Inf. Model..

[8]  Horst Bunke,et al.  Bridging the Gap between Graph Edit Distance and Kernel Machines , 2007, Series in Machine Perception and Artificial Intelligence.

[9]  Horst Bunke,et al.  Error Correcting Graph Matching: On the Influence of the Underlying Cost Function , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[11]  Alberto Del Bimbo,et al.  Efficient Matching and Indexing of Graph Models in Content-Based Retrieval , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Alfred O. Hero,et al.  A binary linear programming formulation of the graph edit distance , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Kaspar Riesen,et al.  Improving Graph Edit Distance Approximation by Centrality Measures , 2014, 2014 22nd International Conference on Pattern Recognition.

[14]  Kuo-Chin Fan,et al.  Genetic-based search for error-correcting graph isomorphism , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[15]  Edwin R. Hancock,et al.  Graph Edit Distance without Correspondence from Continuous-Time Quantum Walks , 2008, SSPR/SPR.

[16]  Kaspar Riesen,et al.  Computing Upper and Lower Bounds of Graph Edit Distance in Cubic Time , 2014, ANNPR.

[17]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[18]  Kaspar Riesen,et al.  IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning , 2008, SSPR/SPR.

[19]  Kaspar Riesen,et al.  Approximate Graph Edit Distance Guided by Bipartite Matching of Bags of Walks , 2014, S+SSPR.

[20]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[21]  Horst Bunke,et al.  An Error-Tolerant Approximate Matching Algorithm for Attributed Planar Graphs and Its Application to Fingerprint Classification , 2004, SSPR/SPR.

[22]  Horst Bunke,et al.  Inexact graph matching for structural pattern recognition , 1983, Pattern Recognit. Lett..

[23]  S. V. N. Vishwanathan,et al.  Graph kernels , 2007 .

[24]  Thomas Gärtner,et al.  A survey of kernels for structured data , 2003, SKDD.

[25]  Kaspar Riesen,et al.  Greedy Graph Edit Distance , 2015, MLDM.

[26]  Kaspar Riesen,et al.  Graph Classification and Clustering Based on Vector Space Embedding , 2010, Series in Machine Perception and Artificial Intelligence.

[27]  Francesc Serratosa,et al.  Active Graph Matching Based on Pairwise Probabilities between Nodes , 2012, SSPR/SPR.

[28]  Mario Vento,et al.  Graph Matching and Learning in Pattern Recognition in the Last 10 Years , 2014, Int. J. Pattern Recognit. Artif. Intell..

[29]  King-Sun Fu,et al.  A distance measure between attributed relational graphs for pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[30]  Kaspar Riesen,et al.  Suboptimal Graph Edit Distance Based on Sorted Local Assignments , 2015, MCS.

[31]  Hans-Peter Kriegel,et al.  Shortest-path kernels on graphs , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[32]  David Avis,et al.  A survey of heuristics for the weighted matching problem , 1983, Networks.

[33]  S. V. N. Vishwanathan,et al.  Fast Computation of Graph Kernels , 2006, NIPS.

[34]  Horst Bunke,et al.  Optimal quadratic-time isomorphism of ordered graphs , 1999, Pattern Recognit..

[35]  Francesc Serratosa,et al.  Speeding up Fast Bipartite Graph Matching Through a New Cost Matrix , 2015, Int. J. Pattern Recognit. Artif. Intell..

[36]  Xuelong Li,et al.  A survey of graph edit distance , 2010, Pattern Analysis and Applications.

[37]  Kaspar Riesen,et al.  Approximation of Graph Edit Distance in Quadratic Time , 2015, GbRPR.

[38]  Michael J. Fischer,et al.  The String-to-String Correction Problem , 1974, JACM.

[39]  Kaspar Riesen,et al.  Speeding Up Graph Edit Distance Computation through Fast Bipartite Matching , 2011, GbRPR.

[40]  Hans-Peter Kriegel,et al.  Protein function prediction via graph kernels , 2005, ISMB.