Adsorption of formic acid on rutile TiO2 (110) revisited: an infrared reflection-absorption spectroscopy and density functional theory study.
暂无分享,去创建一个
Shuanglin Hu | K. Hermansson | Shuanglin Hu | L. Österlund | A. Mattsson | K Hermansson | A Mattsson | L Österlund
[1] D. P. Woodruff,et al. Structure Determination of Formic Acid Reaction Products on TiO2(110) , 2004 .
[2] M. Grätzel,et al. Structure and Vibrational Spectrum of Formate and Acetate Adsorbed from Aqueous Solution onto the TiO2 Rutile (110) Surface , 2004 .
[3] F. Bechstedt,et al. Linear optical properties in the projector-augmented wave methodology , 2006 .
[4] Ulrike Diebold,et al. The surface science of titanium dioxide , 2003 .
[5] Yves J. Chabal,et al. Surface infrared spectroscopy , 1988 .
[6] A. A. Davydov,et al. Molecular Spectroscopy of Oxide Catalyst Surfaces , 2003 .
[7] M. Tuckerman,et al. IN CLASSICAL AND QUANTUM DYNAMICS IN CONDENSED PHASE SIMULATIONS , 1998 .
[8] M. Barteau,et al. Structure and composition requirements for deoxygenation, dehydration, and ketonization reactions of carboxylic acids on TiO2(001) single-crystal surfaces , 1990 .
[9] M. Gillan,et al. The adsorption and dissociation of ROH molecules on TiO2(110) , 1998 .
[10] K. Yasuoka,et al. A systematic study of polarons due to oxygen vacancy formation at the rutile TiO2(110) surface by GGA + U and HSE06 methods , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.
[11] G. Kresse,et al. Ab initio molecular dynamics for liquid metals. , 1993 .
[12] A. Fujishima,et al. TiO2 photocatalysis and related surface phenomena , 2008 .
[13] M. Bowker,et al. Formic acid adsorption and decomposition on TiO 2 (1 1 0) and on Pd/TiO 2 (1 1 0) model catalysts , 2002 .
[14] R. Rousseau,et al. Thermally-driven processes on rutile TiO2(1 1 0)-(1 × 1): A direct view at the atomic scale , 2010 .
[15] W. N. Hansen. Reflection spectroscopy of adsorbed layers , 1970 .
[16] G. Kimmel,et al. Adsorption Geometry of CO versus Coverage on TiO2(110) from s- and p-Polarized Infrared Spectroscopy. , 2012, The journal of physical chemistry letters.
[17] R. Signorell,et al. Infrared spectroscopy of acetic acid and formic acid aerosols: pure and compound acid/ice particles. , 2007, Physical chemistry chemical physics : PCCP.
[18] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[19] G. Watson,et al. A DFT+U description of oxygen vacancies at the TiO2 rutile (110) surface , 2007 .
[20] S. Tomić,et al. Low energy electron diffraction study of TiO2(110)(2 × 1)-[HCOO]- , 2008 .
[21] Jong‐Liang Lin,et al. Photooxidation of Formic Acid vs Formate and Ethanol vs Ethoxy on TiO2 and Effect of Adsorbed Water on the Rates of Formate and Formic Acid Photooxidation , 2001 .
[22] D. C. Cronemeyer. Electrical and Optical Properties of Rutile Single Crystals , 1952 .
[23] G. Mahan,et al. Collective vibrational modes of adsorbed CO , 1978 .
[24] H. Metiu,et al. Electronic Structure of Partially Reduced Rutile TiO2(110) Surface: Where Are the Unpaired Electrons Located? , 2011 .
[25] A. Reller,et al. Photoinduced reactivity of titanium dioxide , 2004 .
[26] H. Onishi,et al. Formate Adsorption on the (111) Surface of Rutile TiO2 , 2004 .
[27] E. Assim. Optical constants of TiO1.7 thin films deposited by electron beam gun , 2008 .
[28] Mark R Pederson,et al. Density-Functional-Based Determination of Vibrational Polarizabilities in Molecules within the Double-Harmonic Approximation: Derivation and Application. , 2005, Journal of chemical theory and computation.
[29] Annabella Selloni,et al. Formic Acid Adsorption on Dry and Hydrated TiO2 Anatase (101) Surfaces by DFT Calculations , 2000 .
[30] C. Wöll,et al. Monitoring electronic structure changes of TiO2(110) via sign reversal of adsorbate vibrational bands. , 2010, Physical chemistry chemical physics : PCCP.
[31] F. Wooten. Chapter 3 – ABSORPTION AND DISPERSION , 1972 .
[32] T. Bučko,et al. A density-functional study of the adsorption of methane-thiol on the (111) surfaces of the Ni-group metals: II. Vibrational spectroscopy , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[33] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[34] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .
[35] B. Hammer,et al. Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: A combined high-resolution STM and DFT study , 2005 .
[36] F. Wooten,et al. Optical Properties of Solids , 1972 .
[37] Hafner,et al. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.
[38] A. Davydov. Molecular Spectroscopy of Oxide Catalyst Surfaces: Davydov/Molecular , 2003 .
[39] D. Matthey,et al. Enhanced Bonding of Gold Nanoparticles on Oxidized TiO2(110) , 2007, Science.
[40] C. Humphreys,et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .
[41] Kenneth J. Miller,et al. Additivity methods in molecular polarizability , 1990 .
[42] M. Newton,et al. FOURIER TRANSFORM REFLECTION-ABSORPTION IR SPECTROSCOPY STUDY OF FORMATE ADSORPTION ON TIO2(110) , 1999 .
[43] S. Abrahams,et al. Rutile: Normal Probability Plot Analysis and Accurate Measurement of Crystal Structure , 1971 .
[44] Jinlong Yang,et al. Formation and diffusion of oxygen-vacancy pairs on TiO2(110)-(1x1). , 2008, The Journal of chemical physics.
[45] J. VandeVondele,et al. Polarization- and Azimuth-Resolved Infrared Spectroscopy of Water on TiO2(110): Anisotropy and the Hydrogen-Bonding Network. , 2012, The journal of physical chemistry letters.
[46] Xue-qing Gong,et al. Density functional theory study of formic acid adsorption on anatase TiO2(001): geometries, energetics, and effects of coverage, hydration, and reconstruction. , 2006, The journal of physical chemistry. B.
[47] Scheffler,et al. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.
[48] M. A. Henderson. Complexity in the Decomposition of Formic Acid on the TiO2(110) Surface , 1997 .
[49] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[50] Masatake Haruta,et al. Size- and support-dependency in the catalysis of gold , 1997 .
[51] H. Onishi,et al. Formic Acid Adsorption on Anatase TiO2(001)−(1 × 4) Thin Films Studied by NC-AFM and STM† , 2002 .
[52] S. Thevuthasan,et al. Chemisorption Geometry, Vibrational Spectra, and Thermal Desorption of Formic Acid on TiO2(110) , 1998 .
[53] H. Onishi,et al. Switchover of Reaction Paths in the Catalytic Decomposition of Formic Acid on TiO2(110) Surface , 1994 .
[54] Stefano de Gironcoli,et al. Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.
[55] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[56] Masaki Aizawa,et al. First-Principles Theoretical Study and Scanning Tunneling Microscopic Observation of Dehydration Process of Formic Acid on a TiO2(110) Surface† , 2004 .