Synthesis of 1D WO3 nanostructures using different capping agents for pseudocapacitor applications

[1]  Eui-Tae Kim,et al.  Facile synthesis and efficient photoelectrochemical reaction of WO3/WS2 core@shell nanorods utilizing WO3∙0.33H2O phase , 2021 .

[2]  Chaoyang Wang,et al.  Oxygen vacancy-rich WO3 heterophase structure: A trade-off between surface-limited pseudocapacitance and intercalation-limited behaviour , 2021 .

[3]  Pandiyarasan Veluswamy,et al.  Facile microwave synthesis of Sn-doped WO3 for pseudocapacitor applications , 2021, Journal of Materials Science: Materials in Electronics.

[4]  A. Raghu,et al.  Punica granatum Pericarp Extract Catalyzed Green Chemistry Approach for Synthesizing Novel Ligand and its Metal(II) Complexes: Molecular Docking/DNA Interactions. , 2021, Journal of Molecular Structure.

[5]  E. Waclawik,et al.  Photocatalytic-controlled olefin isomerization over WO3–x using low-energy photons up to 625 nm , 2021 .

[6]  Xusheng Du,et al.  High Performance Asymmetric Supercapacitor Based on Hierarchical Carbon Cloth In Situ Deposited with h-WO3 Nanobelts as Negative Electrode and Carbon Nanotubes as Positive Electrode , 2021, Micromachines.

[7]  A. Razaq,et al.  Strategy to enhance the electrochemical characteristics of lanthanum sulfide nanorods for supercapacitor applications , 2021, Journal of Nanoparticle Research.

[8]  M. Maaza,et al.  Synthesis, characterization and ab initio study of WO3 nanocubes with peculiar electrochemical properties , 2021, Journal of Nanoparticle Research.

[9]  N. Kim,et al.  0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review , 2021 .

[10]  Pranay P. Morajkar,et al.  Designing a Rare DNA-Like Double Helical Microfiber Superstructure via Self-Assembly of In Situ Carbon Fiber-Encapsulated WO3-x Nanorods as an Advanced Supercapacitor Material. , 2020, ACS applied materials & interfaces.

[11]  Qiang Zhao,et al.  Flexible Transparent Supercapacitors: Materials and Devices , 2020, Advanced Functional Materials.

[12]  Jing Xu,et al.  Orientated VSe2 nanoparticles anchored on N-doped hollow carbon sphere for high-stable aqueous energy application. , 2020, Journal of colloid and interface science.

[13]  Ruiqin Yang,et al.  Electrochemical activation combined with advanced oxidation on NiCo2O4 nanoarray electrode for decomposition of Rhodamine B , 2020 .

[14]  Shobhnath P. Gupta,et al.  High-performance supercapacitor electrode and photocatalytic dye degradation of mixed-phase WO3 nanoplates , 2020 .

[15]  K. Sadasivuni,et al.  Nanostructured metal oxides and its hybrids for photocatalytic and biomedical applications. , 2020, Advances in colloid and interface science.

[16]  M. Aliannezhadi,et al.  Hydrothermal synthesis and characterization of WO3 nanostructures: Effect of reaction time , 2020, Materials Research Express.

[17]  A. Banerjee,et al.  Chemical supercapacitors: a review focusing on metallic compounds and conducting polymers , 2020 .

[18]  S. Jun,et al.  Review on recent progress in the development of tungsten oxide-based electrodes for electrochemical energy storage. , 2020, ChemSusChem.

[19]  Raghava Reddy Kakarla,et al.  Novel Co and Ni metal nanostructures as efficient photocatalysts for photodegradation of organic dyes , 2019, Materials Research Express.

[20]  M. Aliannezhadi,et al.  Hydrothermal synthesis and characterization of WO3 nanostructures: effects of capping agent and pH , 2019, Materials Research Express.

[21]  Huajun Zheng,et al.  One-step solvothermal synthesis of feather duster-like CNT@WO3 as high-performance electrode for supercapacitor , 2019, Materials Letters.

[22]  S. Basu,et al.  Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors , 2019, Microchemical Journal.

[23]  Rongsheng Chen,et al.  Simple synthesis of 1D, 2D and 3D WO3 nanostructures on stainless steel substrate for high-performance supercapacitors , 2019, Journal of Alloys and Compounds.

[24]  T. Ji,et al.  Charge storage in WO3 polymorphs and their application as supercapacitor electrode material , 2019, Results in Physics.

[25]  Kun Chang,et al.  Preparation of oxygen-deficient WO3- nanosheets and their characterization as anode materials for high-performance Li-ion batteries , 2019, Electrochimica Acta.

[26]  S. Dou,et al.  WO3 nanolayer coated 3D-graphene/sulfur composites for high performance lithium/sulfur batteries , 2019, Journal of Materials Chemistry A.

[27]  Inamuddin,et al.  Nanophotocatalysis and Environmental Applications: Materials and Technology , 2019, Environmental Chemistry for a Sustainable World.

[28]  K. R. Reddy,et al.  Non-metal (Oxygen, Sulphur, Nitrogen, Boron and Phosphorus)-Doped Metal Oxide Hybrid Nanostructures as Highly Efficient Photocatalysts for Water Treatment and Hydrogen Generation , 2019, Environmental Chemistry for a Sustainable World.

[29]  L. Cao,et al.  Self-assembled pancake-like hexagonal tungsten oxide with ordered mesopores for supercapacitors , 2018 .

[30]  Haiyan Wang,et al.  Low-crystalline tungsten trioxide anode with superior electrochemical performance for flexible solid-state asymmetry supercapacitor , 2018 .

[31]  Can Li,et al.  K2SO4-Assisted hexagonal/monoclinic WO3 phase junction for efficient photocatalytic degradation of RhB , 2018 .

[32]  Ke-Jing Huang,et al.  Superior mixed Co-Cd selenide nanorods for high performance alkaline battery-supercapacitor hybrid energy storage , 2018 .

[33]  Ke-Jing Huang,et al.  Metal–organic framework derived hollow materials for electrochemical energy storage , 2018 .

[34]  S. Jiao,et al.  Ordered WO3-x nanorods: facile synthesis and their electrochemical properties for aluminum-ion batteries. , 2018, Chemical communications.

[35]  Jia Chu,et al.  WO3 nanoflower coated with graphene nanosheet: Synergetic energy storage composite electrode for supercapacitor application , 2017 .

[36]  W. Mai,et al.  WO3 nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis , 2016 .

[37]  Yi Jia,et al.  Biomimetic CNT@TiO2 composite with enhanced photocatalytic properties , 2015 .

[38]  Zhengu Chen,et al.  Hierarchical Nanostructured WO3 with Biomimetic Proton Channels and Mixed Ionic-Electronic Conductivity for Electrochemical Energy Storage. , 2015, Nano letters.

[39]  Huajun Zheng,et al.  H–TiO2/C/MnO2 nanocomposite materials for high-performance supercapacitors , 2015, Journal of Nanoparticle Research.

[40]  Zhengguo Jin,et al.  Exposed facets induced enhanced acetone selective sensing property of nanostructured tungsten oxide , 2014 .

[41]  Zhigang Zhao,et al.  Single‐Crystalline Tungsten Oxide Quantum Dots for Fast Pseudocapacitor and Electrochromic Applications , 2014, Advanced materials.

[42]  J. S. Lee,et al.  Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction , 2010 .

[43]  A. Moshfegh,et al.  Nanoparticle catalysts , 2009 .

[44]  Raymond J. Kopp,et al.  Energy Resources and Global Development , 2003, Science.

[45]  Aleksandar Dekanski,et al.  Glassy carbon electrodes: I. Characterization and electrochemical activation , 2001 .

[46]  E. Barrett,et al.  Determination of Nitrogen Adsorption-Desorption Isotherms , 1951 .