Update rates constraints in fixed-panel Radar Search Pattern Optimization with limited time budget

Electronic Phased-Array Radars offer new possibilities for Radar Search Pattern Optimization by using bi-dimensional beam-forming and beam steering, along both elevation and azimuth axes. The Radar Search Pattern Optimization problem can be approximated as a Set Cover problem and solved using Integer Programming methods. This approximation can be extended to account for direction-specific scan update rates constraints without the need to modify the optimization algorithm.

[1]  Frederic Barbaresco,et al.  Radar tasks scheduling for a multifunction phased array radar with hard time constraint and priority , 2014, 2014 International Radar Conference.

[2]  G. Thiele,et al.  Antenna theory and design , 1981 .

[3]  韩玉兵,et al.  Scalable Alternating Projection and Proximal Splitting for Array Pattern Synthesis , 2015 .

[4]  F. Barbaresco,et al.  Multi-criteria aggregation for adaptive multifunction Radar Resource Management performances evaluation , 2017, 2017 18th International Radar Symposium (IRS).

[5]  G. K. Mahanti,et al.  Phase-Only and Amplitude-Phase Only Synthesis of Dual-Beam Pattern Linear Antenna Arrays Using Floating-Point Genetic Algorithms , 2007 .

[6]  F. Barbaresco,et al.  Intelligent M3R Radar Time Resources management: Advanced cognition, agility & autonomy capabilities , 2009, 2009 International Radar Conference "Surveillance for a Safer World" (RADAR 2009).

[7]  Vincent Jeauneau Contribution à l'ordonnancement temps réel : Application aux radars multifonctions , 2013 .

[8]  F. Bennis,et al.  Non-uniform constrained optimization of radar search patterns in direction cosines space using integer programming , 2016, 2016 17th International Radar Symposium (IRS).

[9]  D. Willner,et al.  Antenna pattern synthesis using weighted least squares , 1992 .

[10]  Gérard Cornuéjols,et al.  Integer Programming Models , 2021, Linear and Convex Optimization.

[11]  R. King Electromagnetic waves and antennas above and below the surface of the earth , 1979 .

[12]  Bernd Gärtner,et al.  Understanding and Using Linear Programming (Universitext) , 2006 .

[13]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[14]  Kerem Bülbül,et al.  The Set Covering Problem Revisited: An Empirical Study of the Value of Dual Information , 2014 .