Outlier-Preserving Focus+Context Visualization in Parallel Coordinates

Focus+context visualization integrates a visually accentuated representation of selected data items in focus (more details, more opacity, etc.) with a visually deemphasized representation of the rest of the data, i.e., the context. The role of context visualization is to provide an overview of the data for improved user orientation and improved navigation. A good overview comprises the representation of both outliers and trends. Up to now, however, context visualization not really treated outliers sufficiently. In this paper we present a new approach to focus+context visualization in parallel coordinates which is truthful to outliers in the sense that small-scale features are detected before visualization and then treated specially during context visualization. Generally, we present a solution which enables context visualization at several levels of abstraction, both for the representation of outliers and trends. We introduce outlier detection and context generation to parallel coordinates on the basis of a binned data representation. This leads to an output-oriented visualization approach which means that only those parts of the visualization process are executed which actually affect the final rendering. Accordingly, the performance of this solution is much more dependent on the visualization size than on the data size which makes it especially interesting for large datasets. Previous approaches are outperformed, the new solution was successfully applied to datasets with up to 3 million data records and up to 50 dimensions

[1]  Jean-Daniel Fekete,et al.  Interactive information visualization of a million items , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[2]  H. P. Friedman,et al.  The surgical implications of physiologic patterns in myocardial infarction shock. , 1972, Surgery.

[3]  Alfred Inselberg,et al.  Multidimensional detective , 1997, Proceedings of VIZ '97: Visualization Conference, Information Visualization Symposium and Parallel Rendering Symposium.

[4]  Hans-Peter Kriegel,et al.  Visualization Techniques for Mining Large Databases: A Comparison , 1996, IEEE Trans. Knowl. Data Eng..

[5]  R. Kosara,et al.  Parallel sets: visual analysis of categorical data , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[6]  Barthold Lichtenbelt,et al.  Introduction to volume rendering , 1998 .

[7]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[8]  Walter G. Kropatsch,et al.  Digital image analysis: selected techniques and applications , 2001 .

[9]  M. Cooper,et al.  Revealing structure within clustered parallel coordinates displays , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[10]  E. Wegman,et al.  Construction of line densities for parallel coordinate plots , 1992 .

[11]  M. Proust,et al.  Visual Abstraction for Information Visualization of Large Data , 2006 .

[12]  Alfred Inselberg,et al.  Parallel coordinates for visualizing multi-dimensional geometry , 1987 .

[13]  Thomas Ertl,et al.  Level-of-Detail Volume Rendering via 3D Textures , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[14]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[15]  Ronald Peikert,et al.  Vortex Tracking in Scale-Space , 2002, VisSym.

[16]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[17]  Matthew O. Ward,et al.  Hierarchical parallel coordinates for exploration of large datasets , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[18]  Lilly Koltun,et al.  TUFTE, Envisioning Information , 1991 .

[19]  Katrien van Driessen,et al.  A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.

[20]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[21]  Herman Chernoff,et al.  The Use of Faces to Represent Points in k- Dimensional Space Graphically , 1973 .

[22]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[23]  Pak Chung Wong,et al.  Multiresolution multidimensional wavelet brushing , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[24]  P. Rousseeuw,et al.  A fast algorithm for the minimum covariance determinant estimator , 1999 .

[25]  Helwig Hauser,et al.  Parallel Sets: interactive exploration and visual analysis of categorical data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[26]  J RousseeuwPeter,et al.  A fast algorithm for the minimum covariance determinant estimator , 1999 .