On A Notion of Stochastic Zeroing Barrier Function

This note examines the safety verification of the solution of Ito stochastic differential equations using the notion of stochastic zeroing barrier function. The main tools in the proposed method include Ito calculus and the concept of stochastic invariant set.

[1]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[2]  Dong Han,et al.  A New Barrier Certificate for Safety Verification of Hybrid Systems , 2014, Comput. J..

[3]  H. Kushner Stochastic Stability and Control , 2012 .

[4]  H. Kushner Finite time stochastic stability and the analysis of tracking systems , 1966 .

[5]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[6]  Panganamala Ramana Kumar,et al.  Cyber–Physical Systems: A Perspective at the Centennial , 2012, Proceedings of the IEEE.

[7]  G. Winkler,et al.  The Stochastic Integral , 1990 .

[8]  Russ Tedrake,et al.  Finite-time regional verification of stochastic non-linear systems , 2011, Int. J. Robotics Res..

[9]  Ali Jadbabaie,et al.  Safety Verification of Hybrid Systems Using Barrier Certificates , 2004, HSCC.

[10]  George J. Pappas,et al.  A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates , 2007, IEEE Transactions on Automatic Control.

[11]  Jean-Pierre Aubin,et al.  Stochastic nagumo's viability theorem , 1995 .

[12]  Paulo Tabuada,et al.  Control Barrier Function Based Quadratic Programs for Safety Critical Systems , 2016, IEEE Transactions on Automatic Control.

[13]  Edward A. Lee Cyber Physical Systems: Design Challenges , 2008, 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC).

[14]  Giuseppe Da Prato,et al.  Invariance of stochastic control systems with deterministic arguments , 2004 .

[15]  Y. Tipsuwan,et al.  Control methodologies in networked control systems , 2003 .

[16]  Paulo Tabuada,et al.  Control Barrier Functions: Theory and Applications , 2019, 2019 18th European Control Conference (ECC).

[17]  Hui Kong,et al.  Exponential-Condition-Based Barrier Certificate Generation for Safety Verification of Hybrid Systems , 2013, CAV.

[18]  Liyun Dai,et al.  Barrier certificates revisited , 2013, J. Symb. Comput..

[19]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[20]  George J. Pappas,et al.  Stochastic safety verification using barrier certificates , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).