THE BARYONIC ACOUSTIC FEATURE AND LARGE-SCALE CLUSTERING IN THE SLOAN DIGITAL SKY SURVEY LUMINOUS RED GALAXY SAMPLE

We examine the correlation function ξ of the Sloan Digital Sky Survey Luminous Red Galaxy sample at large scales (60 h−1 Mpc < s < 400 h−1 Mpc) using the final data release (DR7). Focusing on a quasi-volume-limited (0.16 < z < 0.36) subsample and utilizing mock galaxy catalogs, we demonstrate that the observed baryonic acoustic peak and larger scale signal are consistent with ΛCDM at 70%–95% confidence. Fitting data to a non-linear, redshift-space, template-based model, we constrain the peak position at sp = 101.7± 3.0 h−1 Mpc when fitting the range 60 h−1 Mpc < s < 150 h−1 Mpc (1σ uncertainties). This redshift-space distance sp is related to the comoving sound horizon scale rs after taking into account matter-clustering non-linearities, redshift distortions, and galaxy-clustering bias. Mock catalogs show that the probability that a DR7-sized sample would not have an identifiable peak is at least ∼10%. As a consistency check of a fiducial cosmology, we use the observed sp to obtain the distance relative to the acoustic scale. We find rs/DV(z = 0.278) = 0.1389 ± 0.0043. This result is in excellent agreement with Percival et al., who examine roughly the same data set, but use the power spectrum. Comparison with other determinations in the literature are also in very good agreement. The signal of the full sample at 125 h−1 Mpc < s < 200 h−1 Mpc tends to be high relative to theoretical expectations; this slight deviation can probably be attributed to sample variance. We have tested our results against a battery of possible systematic effects, finding all effects are smaller than our estimated sample variance.

[1]  Y. Baryshev,et al.  Absence of anti-correlations and of baryon acoustic oscillations in the galaxy correlation function from the Sloan Digital Sky Survey data release 7 , 2009, 0903.0950.

[2]  Durham,et al.  Cosmological parameter constraints from SDSS luminous red galaxies: a new treatment of large-scale clustering , 2009, 0901.2570.

[3]  V. Martínez,et al.  RELIABILITY OF THE DETECTION OF THE BARYON ACOUSTIC PEAK , 2008, 0812.2154.

[4]  John Dubinski,et al.  THE HORIZON RUN N-BODY SIMULATION: BARYON ACOUSTIC OSCILLATIONS AND TOPOLOGY OF LARGE-SCALE STRUCTURE OF THE UNIVERSE , 2008, 0812.1392.

[5]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[6]  U. Seljak,et al.  Scale-dependent bias induced by local non-Gaussianity: a comparison to N-body simulations , 2008, 0811.2748.

[7]  E. Gaztañaga,et al.  Clustering of luminous red galaxies – I. Large-scale redshift-space distortions , 2008, 0807.2460.

[8]  E. Gaztañaga,et al.  Clustering of luminous red galaxies – IV. Baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z) , 2008, 0807.3551.

[9]  D. Eisenstein,et al.  Non-linear Structure Formation and the Acoustic Scale , 2022 .

[10]  N. Padmanabhan,et al.  Constraining anisotropic baryon oscillations , 2008, 0804.0799.

[11]  Durham,et al.  What is the best way to measure baryonic acoustic oscillations , 2008, 0804.0233.

[12]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[13]  A. Szalay,et al.  Large-Scale Anisotropic Correlation Function of SDSS Luminous Red Galaxies , 2007, 0711.3640.

[14]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[15]  M. Crocce,et al.  Nonlinear evolution of baryon acoustic oscillations , 2007, 0704.2783.

[16]  R. Smith,et al.  Motion of the Acoustic Peak in the Correlation Function , 2007, astro-ph/0703620.

[17]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[18]  Durham,et al.  The detectability of baryonic acoustic oscillations in future galaxy surveys. , 2007, astro-ph/0702543.

[19]  D. Eisenstein,et al.  Improved Forecasts for the Baryon Acoustic Oscillations and Cosmological Distance Scale , 2007, astro-ph/0701079.

[20]  O. Lahav,et al.  Cosmological baryonic and matter densities from 600 000 SDSS luminous red galaxies with photometric redshifts , 2006, astro-ph/0605303.

[21]  D. Eisenstein,et al.  On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter , 2006, astro-ph/0604361.

[22]  D. Eisenstein,et al.  Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak , 2006, astro-ph/0604362.

[23]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[24]  Jr.,et al.  The Sloan Digital Sky Survey monitor telescope pipeline , 2006, astro-ph/0608575.

[25]  R. Nichol,et al.  The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data , 2006, astro-ph/0605302.

[26]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[27]  G. Huetsi Acoustic oscillations in the SDSS DR4 luminous red galaxy sample power spectrum , 2005, astro-ph/0512201.

[28]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[29]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[30]  R. Nichol,et al.  The Intermediate-Scale Clustering of Luminous Red Galaxies , 2004, astro-ph/0411557.

[31]  J. Brinkmann,et al.  The Small-Scale Clustering of Luminous Red Galaxies via Cross-Correlation Techniques , 2004, astro-ph/0411559.

[32]  Neta A. Bahcall,et al.  Cosmic Homogeneity Demonstrated with Luminous Red Galaxies , 2004, astro-ph/0411197.

[33]  A. Szalay,et al.  SDSS data management and photometric quality assessment , 2004, astro-ph/0410195.

[34]  T. Matsubara Correlation Function in Deep Redshift Space as a Cosmological Probe , 2004, astro-ph/0408349.

[35]  U. Seljak,et al.  Signatures of relativistic neutrinos in CMB anisotropy and matter clustering , 2003, astro-ph/0310198.

[36]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[37]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[38]  C. Blake,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL: MARCH 17, 2003 Preprint typeset using L ATEX style emulateapj v. 26/01/00 OVER 5000 DISTANT EARLY-TYPE GALAXIES IN COMBO-17: A RED SEQUENCE AND ITS EVOLUTION SINCE Z ∼ 1 , 2003 .

[39]  Ž. Ivezić,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[40]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[41]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[42]  A. Gabrielli,et al.  Glass-like universe: Real-space correlation properties of standard cosmological models , 2001, astro-ph/0110451.

[43]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[44]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[45]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[46]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[47]  F. M. Maley,et al.  An Efficient Algorithm for Positioning Tiles in the Sloan Digital Sky Survey , 2001, astro-ph/0105535.

[48]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[49]  I. Szapudi,et al.  A Comparison of Estimators for the Two-Point Correlation Function , 1999, The Astrophysical journal.

[50]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[51]  D. Eisenstein,et al.  Cosmic Complementarity: Joint Parameter Estimation from Cosmic Microwave Background Experiments and Redshift Surveys , 1998, astro-ph/9807130.

[52]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[53]  D. Weinberg,et al.  Constraints on the Effects of Locally Biased Galaxy Formation , 1997, astro-ph/9712192.

[54]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[55]  G. Bernstein The Variance of Correlation Function Estimates , 1994 .

[56]  A. Hamilton Toward Better Ways to Measure the Galaxy Correlation Function , 1993 .

[57]  J. Frieman,et al.  Sloan Digital Sky Survey , 1993 .

[58]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[59]  P. Coles Galaxy formation with a local bias , 1993 .

[60]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[61]  E. Gaztañaga,et al.  Biasing and hierarchical statistics in large-scale structure , 1993, astro-ph/9302009.

[62]  Marc Davis,et al.  A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .

[63]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[64]  M. G. Hauser,et al.  Statistical analysis of catalogs of extragalactic objects. III - The Shane-Wirtanen and Zwicky catalogs , 1974 .