The Sizes of Spheres from Profiles in a Thin Slice I. Opaque Spheres
暂无分享,去创建一个
[1] S. D. Wicksell,et al. THE CORPUSCLE PROBLEM. A MATHEMATICAL STUDY OF A BIOMETRIC PROBLEM , 1925 .
[2] P. Goldsmith. The calculation of true particle size distributions from the sizes observed in a thin slice , 1967 .
[3] S. Komenda,et al. Die mikroskopische Bestimmung der Größenverteilung von Kugelelementen, die zufällig in gewisser Umwelt verstreut sind , 1969 .
[4] W. L. Nicholson,et al. Estimation of linear properties of particle size distributions , 1970 .
[5] H. Riedwyl,et al. Bestimmung der Größenverteilung von Kugeln aus Schnittkreisradien , 1970 .
[6] Estimating the distribution of spherical and elliptical bodies in conglomerates from plane sections. , 1970 .
[7] N Keiding,et al. Maximum likelihood estimation of the size distribution of liver cell nuclei from the observed distribution in a plane section. , 1972, Biometrics.
[8] Robert S. Anderssen,et al. Abel type integral equations in stereology. II. Computational methods of solution and the random spheres approximation , 1975 .
[9] R. Anderssen. Stable Procedures for the Inversion of Abel′s Equation , 1976 .
[10] R. E. Miles,et al. Precise and general conditions for the validity of a comprehensive set of stereological fundamental formulae , 1976 .
[11] R. E. Miles. Estimating aggregate and overall characteristics from thick sections by transmission microscopy , 1976 .
[12] W. J. Whitehouse. Errors in area measurement in thick sections, with special reference to trabecular bone , 1976, Journal of Microscopy.
[13] D. Greeley,et al. Practical approach to the estimation of the overall mean caliper diameter of a population of spheres and its application to data where small profiles are missed , 1978 .
[14] P. E. Rose. Improved tables for the evaluation of sphere size distributions including the effect of section thickness , 1980, Journal of microscopy.