Mechanisms of bone resorption and new bone formation in spondyloarthropathies

[1]  Philippe Bousso,et al.  Dynamics of Thymocyte-Stromal Cell Interactions Visualized by Two-Photon Microscopy , 2002, Science.

[2]  P. Emery,et al.  Histological assessment of the early enthesitis lesion in spondyloarthropathy , 2002, Annals of the rheumatic diseases.

[3]  John C. Davis,et al.  Treatment of ankylosing spondylitis by inhibition of tumor necrosis factor alpha. , 2002, The New England journal of medicine.

[4]  D. Elewaut,et al.  Raynaud's phenomenon affecting the tongue of a patient with scleroderma , 2002, Annals of the rheumatic diseases.

[5]  Kozo Nakamura,et al.  RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-β , 2002, Nature.

[6]  E. Veys,et al.  Repeated infusions of infliximab, a chimeric anti-TNFα monoclonal antibody, in patients with active spondyloarthropathy: one year follow up , 2002, Annals of the rheumatic diseases.

[7]  J. Berthelot,et al.  New pathogenic hypotheses for spondyloarthropathies. , 2002, Joint, bone, spine : revue du rhumatisme.

[8]  Shi Wei,et al.  Interleukin-4 Reversibly Inhibits Osteoclastogenesis via Inhibition of NF-κB and Mitogen-activated Protein Kinase Signaling* , 2002, The Journal of Biological Chemistry.

[9]  P. Youssef,et al.  Spondyloarthropathies: an overview , 2002, Internal medicine journal.

[10]  J. Deng,et al.  The Novel Zinc Finger-Containing Transcription Factor Osterix Is Required for Osteoblast Differentiation and Bone Formation , 2002, Cell.

[11]  I. González-Álvaro,et al.  CD69 expression on lymphocytes and interleukin-15 levels in synovial fluids from different inflammatory arthropathies , 2002, Rheumatology International.

[12]  E. Wagner,et al.  Genetic control of skeletal development. , 2001, Current opinion in genetics & development.

[13]  E. Veys,et al.  New treatment options in spondyloarthropathies: increasing evidence for significant efficacy of anti–tumor necrosis factor therapy , 2001, Current opinion in rheumatology.

[14]  M. Horton,et al.  Transforming growth factor-beta1 (TGF-beta) stimulates the osteoclast-forming potential of peripheral blood hematopoietic precursors in a lymphocyte-rich microenvironment. , 2001, Bone.

[15]  T. Martin,et al.  IL-12 Alone and in Synergy with IL-18 Inhibits Osteoclast Formation In Vitro1 , 2001, The Journal of Immunology.

[16]  L. Laloux,et al.  Immunohistological study of entheses in spondyloarthropathies: comparison in rheumatoid arthritis and osteoarthritis , 2001, Annals of the rheumatic diseases.

[17]  S. Takeda,et al.  Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. , 2001, Genes & development.

[18]  S. Takeshita,et al.  TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. , 2000, The Journal of clinical investigation.

[19]  Hiroshi Takayanagi,et al.  T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ , 2000, Nature.

[20]  G. Karsenty,et al.  The osteoblast: a sophisticated fibroblast under central surveillance. , 2000, Science.

[21]  S. Teitelbaum,et al.  Bone resorption by osteoclasts. , 2000, Science.

[22]  E. Märker-Hermann,et al.  T-cell studies in the spondyloarthropathies , 2000, Current rheumatology reports.

[23]  I. Alvarez,et al.  HLA-B27 and immunogenetics of spondyloarthropathies. , 2000, Current opinion in rheumatology.

[24]  M. Khan,et al.  Update: the twenty subtypes of HLA-B27. , 2000, Current opinion in rheumatology.

[25]  Josef M. Penninger,et al.  Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand , 1999, Nature.

[26]  C. Gatlin,et al.  TGF-beta enhances osteoclast differentiation in hematopoietic cell cultures stimulated with RANKL and M-CSF. , 1999, Biochemical and biophysical research communications.

[27]  C. López-Larrea,et al.  Immunogenetics, HLA-B27 and spondyloarthropathies. , 1999, Current opinion in rheumatology.

[28]  S. Morony,et al.  Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. Morony,et al.  OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis , 1999, Nature.

[30]  D. Lacey,et al.  Osteoprotegerin Ligand Is a Cytokine that Regulates Osteoclast Differentiation and Activation , 1998, Cell.

[31]  R. Dubose,et al.  A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function , 1997, Nature.

[32]  S. Mundlos,et al.  Cbfa1, a Candidate Gene for Cleidocranial Dysplasia Syndrome, Is Essential for Osteoblast Differentiation and Bone Development , 1997, Cell.

[33]  G Shimamoto,et al.  Osteoprotegerin: A Novel Secreted Protein Involved in the Regulation of Bone Density , 1997, Cell.

[34]  D. Resnick,et al.  Radiology of disorders of the sacroiliac joints. , 1985, JAMA.

[35]  G. Jhangri,et al.  Clinical and radiological amelioration of refractory peripheral spondyloarthritis by pulse intravenous pamidronate therapy. , 2001, The Journal of rheumatology.

[36]  T. Rosol,et al.  Investigations on in vitro bone resorbing activity from athymic (nude) and euthymic mouse splenic leukocytes. , 1989, Bone.

[37]  T. Rosol,et al.  A comparison of bone turnover in athymic (nude) and euthymic mice: biochemical, histomorphometric, bone ash and in vitro studies. , 1989, Bone.