Choquet optimal set in biobjective combinatorial optimization

We study in this paper the generation of the Choquet optimal solutions of biobjective combinatorial optimization problems. Choquet optimal solutions are solutions that optimize a Choquet integral. The Choquet integral is used as an aggregation function, presenting different parameters, and allowing to take into account the interactions between the objectives. We develop a new property that characterizes the Choquet optimal solutions. From this property, a general method to easily generate these solutions in the case of two objectives is defined. We apply the method to two classical biobjective optimization combinatorial optimization problems: the biobjective knapsack problem and the biobjective minimum spanning tree problem. We show that Choquet optimal solutions that are not weighted sum optimal solutions represent only a small proportion of the Choquet optimal solutions and are located in a specific area of the objective space, but are much harder to compute than weighted sum optimal solutions.

[1]  Michel Grabisch,et al.  A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..

[2]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[3]  Daniel Vanderpooten,et al.  Solving efficiently the 0-1 multi-objective knapsack problem , 2009, Comput. Oper. Res..

[4]  V. Torra On some relationships between the WOWA operator and the Choquet integral , 2004 .

[5]  Michel Grabisch,et al.  A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package , 2008, Eur. J. Oper. Res..

[6]  Wlodzimierz Ogryczak,et al.  Inequality measures and equitable approaches to location problems , 2000, Eur. J. Oper. Res..

[7]  Peter Eades,et al.  On Optimal Trees , 1981, J. Algorithms.

[8]  Matthias Ehrgott,et al.  A two-phase algorithm for the biobjective integer minimum cost flow problem , 2009, Comput. Oper. Res..

[9]  Anthony Przybylski,et al.  The Biobjective Assignment Problem , 2006 .

[10]  Anthony Przybylski,et al.  A Recursive Algorithm for Finding All Nondominated Extreme Points in the Outcome Set of a Multiobjective Integer Programme , 2010, INFORMS J. Comput..

[11]  R. Mesiar,et al.  Aggregation Functions (Encyclopedia of Mathematics and its Applications) , 2009 .

[12]  Y. Aneja,et al.  BICRITERIA TRANSPORTATION PROBLEM , 1979 .

[13]  Jacques Teghem,et al.  The multiobjective multidimensional knapsack problem: a survey and a new approach , 2010, Int. Trans. Oper. Res..

[14]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[15]  Patrice Perny,et al.  A Branch and Bound Algorithm for Choquet Optimization in Multicriteria Problems , 2008, MCDM.

[16]  E. Martins On a multicriteria shortest path problem , 1984 .

[17]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[18]  Xavier Gandibleux,et al.  Preferred solutions computed with a label setting algorithm based on Choquet integral for multi-objective shortest paths , 2011, 2011 IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making (MDCM).

[19]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[20]  G. Choquet Theory of capacities , 1954 .

[21]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[22]  Richard A. Watson,et al.  Reducing Local Optima in Single-Objective Problems by Multi-objectivization , 2001, EMO.

[23]  Henri Prade,et al.  Decision-Making Process: Concepts and Methods , 2009 .

[24]  R. Prim Shortest connection networks and some generalizations , 1957 .

[25]  Jacques Teghem,et al.  Two-phases Method and Branch and Bound Procedures to Solve the Bi–objective Knapsack Problem , 1998, J. Glob. Optim..

[26]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[27]  Matthias Ehrgott,et al.  Multicriteria Optimization (2. ed.) , 2005 .

[28]  K. M. Jasinski,et al.  Modelling letter delivery in town areas , 1977, Comput. Oper. Res..

[29]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[30]  Yash P. Aneja,et al.  Minimal spanning tree subject to a side constraint , 1982, Comput. Oper. Res..

[31]  Patrice Perny,et al.  Choquet-based optimisation in multiobjective shortest path and spanning tree problems , 2010, Eur. J. Oper. Res..

[32]  Michel Grabisch,et al.  A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid , 2010, Ann. Oper. Res..

[33]  Vesa Ojalehto,et al.  Interactive Software for Multiobjective Optimization: IND-NIMBUS , 2007 .

[34]  Francis Sourd,et al.  Multi-objective branch and bound. Application to the bi-objective spanning tree problem , 2006 .

[35]  David Pisinger,et al.  A Minimal Algorithm for the 0-1 Knapsack Problem , 1997, Oper. Res..

[36]  V. Torra The weighted OWA operator , 1997, International Journal of Intelligent Systems.