Genomic and cytogenetic analyses reveal satellite repeat signature in allotetraploid okra (Abelmoschus esculentus)

[1]  Yu Wang,et al.  The genome of okra (Abelmoschus esculentus) provides insights into its genome evolution and high nutrient content , 2023, Horticulture research.

[2]  M. Nordborg,et al.  Cycles of satellite and transposon evolution in Arabidopsis centromeres , 2023, Nature.

[3]  M. Schatz,et al.  The genetic and epigenetic landscape of the Arabidopsis centromeres , 2021, bioRxiv.

[4]  Muqing Zhang,et al.  The formation and evolution of centromeric satellite repeats in Saccharum species. , 2021, The Plant journal : for cell and molecular biology.

[5]  K. Mehmood,et al.  Okra (Abelmoschus Esculentus) as a Potential Dietary Medicine with Nutraceutical Importance for Sustainable Health Applications , 2021, Molecules.

[6]  Bing Liu,et al.  The flavonoids of okra insulates against oxidative stress, neuroinflammation and restores BDNF levels in Aβ1 – 42 induced mouse model of Alzheimer's disease , 2021, Experimental Gerontology.

[7]  Pavel Neumann,et al.  Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2 , 2020, Nature Protocols.

[8]  Evan E. Eichler,et al.  Long-read human genome sequencing and its applications , 2020, Nature Reviews Genetics.

[9]  A. A. Kotov,et al.  Functional Significance of Satellite DNAs: Insights From Drosophila , 2020, Frontiers in Cell and Developmental Biology.

[10]  J. Macas,et al.  Extraordinary Sequence Diversity and Promiscuity of Centromeric Satellites in the Legume Tribe Fabeae , 2020, Molecular biology and evolution.

[11]  A. Kovařík,et al.  The Utility of Graph Clustering of 5S Ribosomal DNA Homoeologs in Plant Allopolyploids, Homoploid Hybrids, and Cryptic Introgressants , 2020, Frontiers in Plant Science.

[12]  T. Schmidt,et al.  Satellite DNA landscapes after allotetraploidisation of quinoa (Chenopodium quinoa) reveal unique A and B subgenomes , 2019, bioRxiv.

[13]  L. Gong,et al.  Intra-individual variation and transcribed pseudogenes in the ribosomal ITS1-5.8S-ITS2 rDNA of Paraplagusia japonica (Pleuronectiformes: Cynoglossidae). , 2019, Biochemical and biophysical research communications.

[14]  Fanxing Xu,et al.  Polysaccharide from Okra (Abelmoschus esculentus (L.) Moench) Improves Antioxidant Capacity via PI3K/AKT Pathways and Nrf2 Translocation in a Type 2 Diabetes Model , 2019, Molecules.

[15]  Muqing Zhang,et al.  Characterization analysis of the 35S rDNA intergenic spacers in Erianthus arundinaceus. , 2019, Gene.

[16]  V. Schubert,et al.  Adding color to a century-old enigma: multi-color chromosome identification unravels the autotriploid nature of saffron (Crocus sativus) as a hybrid of wild Crocus cartwrightianus cytotypes. , 2019, The New phytologist.

[17]  J. Schmutz,et al.  Amplification and adaptation of centromeric repeats in polyploid switchgrass species. , 2018, The New phytologist.

[18]  Zhaoqing Chu,et al.  Centromeric DNA characterization in the model grass Brachypodium distachyon provides insights on the evolution of the genus , 2018, The Plant journal : for cell and molecular biology.

[19]  M. Garrido-Ramos Satellite DNA: An Evolving Topic , 2017, Genes.

[20]  Muqing Zhang,et al.  Comparative genetic analysis of the 45S rDNA intergenic spacers from three Saccharum species , 2017, PloS one.

[21]  L. Orsolini,et al.  Herbal Highs: Review on Psychoactive Effects and Neuropharmacology , 2017, Current neuropharmacology.

[22]  C. T. Brown,et al.  Centromere location in Arabidopsis is unaltered by extreme divergence in CENH3 protein sequence , 2017, Genome research.

[23]  A. Leitch,et al.  Cytogenetic features of rRNA genes across land plants: analysis of the Plant rDNA database , 2017, The Plant journal : for cell and molecular biology.

[24]  M. Garrido-Ramos Satellite DNA in Plants: More than Just Rubbish , 2015, Cytogenetic and Genome Research.

[25]  Yiming Li,et al.  Extract of okra lowers blood glucose and serum lipids in high-fat diet-induced obese C57BL/6 mice. , 2014, The Journal of nutritional biochemistry.

[26]  Jiming Jiang,et al.  Boom-Bust Turnovers of Megabase-Sized Centromeric DNA in Solanum Species: Rapid Evolution of DNA Sequences Associated with Centromeres[C][W] , 2014, Plant Cell.

[27]  P. Hliwa,et al.  Molecular cytogenetic study of the European bitterling Rhodeus amarus (Teleostei: Cyprinidae: Acheilognathinae) , 2014, Genetica.

[28]  S. Henikoff,et al.  The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres , 2013, Proceedings of the National Academy of Sciences.

[29]  Kevan J. Salimian,et al.  The octamer is the major form of CENP-A nucleosomes at human centromeres , 2013, Nature Structural &Molecular Biology.

[30]  R. Nichols,et al.  Independent, Rapid and Targeted Loss of Highly Repetitive DNA in Natural and Synthetic Allopolyploids of Nicotiana tabacum , 2012, PloS one.

[31]  M. Huang,et al.  Plant 45S rDNA Clusters Are Fragile Sites and Their Instability Is Associated with Epigenetic Alterations , 2012, PloS one.

[32]  A. Costa,et al.  Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. , 2011, Molecular phylogenetics and evolution.

[33]  D. Choi,et al.  Unraveling the sequence dynamics of the formation of genus-specific satellite DNAs in the family solanaceae , 2011, Heredity.

[34]  Y. Sakakibara,et al.  Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. , 2010, Genome research.

[35]  R. Matyášek,et al.  Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. , 2010, The New phytologist.

[36]  Kevin L. Schneider,et al.  Maize Centromere Structure and Evolution: Sequence Analysis of Centromeres 2 and 5 Reveals Dynamic Loci Shaped Primarily by Retrotransposons , 2009, PLoS genetics.

[37]  M. Gu,et al.  Unstable transmission of rice chromosomes without functional centromeric repeats in asexual propagation , 2009, Chromosome Research.

[38]  D. Choi,et al.  Evolution of ribosomal DNA-derived satellite repeat in tomato genome , 2009, BMC Plant Biology.

[39]  M. Chase,et al.  The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). , 2008, Annals of botany.

[40]  T. Eickbush,et al.  Finely Orchestrated Movements: Evolution of the Ribosomal RNA Genes , 2007, Genetics.

[41]  W. Jin,et al.  Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. Matyášek,et al.  Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana. , 2004, Genetics.

[43]  Jiming Jiang,et al.  A molecular view of plant centromeres. , 2003, Trends in plant science.

[44]  S. Henikoff,et al.  Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. , 2003, Genetics.

[45]  Jiming Jiang,et al.  Highly condensed potato pericentromeric heterochromatin contains rDNA-related tandem repeats. , 2002, Genetics.

[46]  F. Blattner,et al.  Functional Rice Centromeres Are Marked by a Satellite Repeat and a Centromere-Specific Retrotransposon Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.003079. , 2002, The Plant Cell Online.

[47]  A. Joshi,et al.  Alloploid Nature of Okra, Abelmoschus esculentus (L.) Monech. , 1956, Nature.

[48]  M. Guerra,et al.  The meaning of DAPI bands observed after C-banding and FISH procedures. , 2010, Biotechnic & histochemistry : official publication of the Biological Stain Commission.