Abelian and non-Abelian gauge fields in dipole–dipole interacting Rydberg atoms

We show that the dipole-dipole interaction between two Rydberg atoms can lead to substantial Abelian and non-Abelian gauge fields acting on the relative motion of the two atoms. We demonstrate how the gauge fields can be evaluated by numerical techniques. In the case of adiabatic motion in a single internal state, we show that the gauge fields give rise to a magnetic field that results in a Zeeman splitting of the rotational states. In particular, the ground state of a molecular potential well is given by the first excited rotational state. We find that our system realises a synthetic spin-orbit coupling where the relative atomic motion couples to two internal two-atom states. The associated gauge fields are non-Abelian.

[1]  G. Raithel,et al.  Imaging spatial correlations of Rydberg excitations in cold atom clouds. , 2011, Physical review letters.

[2]  D. Yarkony Diabolical conical intersections , 1996 .

[3]  S. Wüster,et al.  Newton's cradle and entanglement transport in a flexible Rydberg chain. , 2010, Physical review letters.

[4]  R. Le Targat,et al.  Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices , 2011, Science.

[5]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[6]  Zygelman Non-Abelian geometric phase and long-range atomic forces. , 1990, Physical review letters.

[7]  Coherent control in a decoherence-free subspace of a collective multilevel system , 2006, quant-ph/0611084.

[8]  I. B. Spielman,et al.  Synthetic magnetic fields for ultracold neutral atoms , 2009, Nature.

[9]  I Bloch,et al.  Experimental realization of strong effective magnetic fields in an optical lattice. , 2011, Physical review letters.

[10]  P. Zoller,et al.  Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms , 2003, quant-ph/0304038.

[11]  M. Saffman,et al.  Observation of Rydberg blockade between two atoms , 2008, 0805.0758.

[12]  L. Santos,et al.  Cold atom dynamics in non-Abelian gauge fields , 2007, 0801.2928.

[13]  Greene,et al.  Creation of polar and nonpolar ultra-long-range rydberg molecules , 2000, Physical review letters.

[14]  W. Phillips,et al.  A synthetic electric force acting on neutral atoms , 2010, 1008.4864.

[15]  Martin Kiffner,et al.  Dipole-Dipole coupled double Rydberg molecules , 2012, 1205.4602.

[16]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[17]  S. Wüster,et al.  Conical intersections in an ultracold gas. , 2010, Physical review letters.

[18]  M. Saffman,et al.  Consequences of Zeeman Degeneracy for van der Waals Blockade between Rydberg Atoms , 2007, 0712.3438.

[19]  J. Petrus,et al.  Enhancement of Rydberg atom interactions using ac Stark shifts. , 2006, Physical review letters.

[20]  K. Overstreet,et al.  Observation of electric-field-induced Cs Rydberg atom macrodimers , 2009 .

[21]  M. Lewenstein,et al.  Non-abelian gauge fields and topological insulators in shaken optical lattices. , 2012, Physical review letters.

[22]  M. Olshanii,et al.  Gauge structures in atom-laser interaction: Bloch oscillations in a dark lattice. , 1996, Physical review letters.

[23]  S. Wüster,et al.  Adiabatic entanglement transport in Rydberg aggregates , 2011 .

[24]  D. Bohm,et al.  Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .

[25]  Moody,et al.  Realizations of magnetic-monopole gauge fields: Diatoms and spin precession. , 1986, Physical review letters.

[26]  Andrew G. Glen,et al.  APPL , 2001 .

[27]  I. Bloch,et al.  Observation of spatially ordered structures in a two-dimensional Rydberg gas , 2012, Nature.

[28]  D. Comparat,et al.  Observation of collective excitation of two individual atoms in the Rydberg blockade regime , 2008, 0810.2960.

[29]  M. Lewenstein,et al.  Tunable gauge potential for neutral and spinless particles in driven optical lattices. , 2012, Physical review letters.

[30]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[31]  J Ruseckas,et al.  Non-Abelian gauge potentials for ultracold atoms with degenerate dark states. , 2005, Physical review letters.

[32]  T. Gallagher Rydberg Atoms: Frontmatter , 1994 .

[33]  J. Shaffer,et al.  Observation of ultralong-range Rydberg molecules , 2009, Nature.

[34]  W. Phillips,et al.  Bose-Einstein condensate in a uniform light-induced vector potential. , 2008, Physical review letters.

[35]  R. A. Williams,et al.  Peierls substitution in an engineered lattice potential. , 2012, Physical review letters.

[36]  Breakdown of the few-level approximation in collective systems , 2006, quant-ph/0611071.

[37]  R. Côté,et al.  Formation and properties of Rydberg macrodimers , 2011 .

[38]  Dexter Kozen,et al.  New , 2020, MFPS.

[39]  J. Dalibard,et al.  Colloquium: Artificial gauge potentials for neutral atoms , 2010, 1008.5378.

[40]  D. Kleppner,et al.  Stark structure of the Rydberg states of alkali-metal atoms , 1979 .

[41]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[42]  Hyunwook Park,et al.  Dipole-dipole broadening of Rb ns-np microwave transitions , 2011 .