Human papillomavirus immortalization and transformation functions.

The high risk HPVs (such as HPV-16 and HPV-18) that are associated with specific anogenital cancers encode two oncoproteins E6 and E7, which are expressed in the HPV positive cancers. The E7 protein functions in cellular transformation, at least in part, through interactions with pRB and the other pRB related 'pocket proteins'. The major target of the E6 oncoprotein encoded by the genital tract, cancer associated human papillomaviruses is p53. Several lines of evidence suggest that E6 and E7 have additional targets important to the oncogenic potential of the virus. Work from a number of laboratories has focused on determining other activities of HPV relevant to carcinogenesis and identifying additional cellular targets of E6 and E7. This paper will review the state of the field at the time of the 19th International Papillomavirus Workshop in September 2001 with respect to the HPV encoded oncoproteins.

[1]  M. Scheffner,et al.  Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins , 1993, Molecular and cellular biology.

[2]  A. Berk,et al.  Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein , 1992, Nature.

[3]  P. Howley,et al.  Bovine papillomavirus type 1 3' early region transformation and plasmid maintenance functions , 1986, Journal of virology.

[4]  C. Meyers,et al.  The E7 proteins of the nononcogenic human papillomavirus type 6b (HPV-6b) and of the oncogenic HPV-16 differ in retinoblastoma protein binding and other properties , 1990, Journal of virology.

[5]  David Beach,et al.  p21 is a universal inhibitor of cyclin kinases , 1993, Nature.

[6]  T. Noda,et al.  Identification of a transforming gene of human papillomavirus type 16 , 1989, Journal of virology.

[7]  S. Elledge,et al.  The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases , 1993, Cell.

[8]  P. Yaciuk,et al.  TGF-β1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains , 1990, Cell.

[9]  D. McCance,et al.  The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes , 1995, Journal of virology.

[10]  A. Levine,et al.  Association of human papillomavirus types 16 and 18 E6 proteins with p53. , 1990, Science.

[11]  D. DiMaio,et al.  44-amino-acid E5 transforming protein of bovine papillomavirus requires a hydrophobic core and specific carboxyl-terminal amino acids , 1988, Molecular and cellular biology.

[12]  S. Caldeira,et al.  Induction of pRb Degradation by the Human Papillomavirus Type 16 E7 Protein Is Essential To Efficiently Overcome p16INK4a-Imposed G1 Cell Cycle Arrest , 2001, Journal of Virology.

[13]  M. Stanley,et al.  Lack of immortalizing activity of a human papillomavirus type 16 variant DNA with a mutation in the E2 gene isolated from normal human cervical keratinocytes. , 1992, Oncogene.

[14]  M. Barbosa,et al.  Single amino acid substitutions in "low-risk" human papillomavirus (HPV) type 6 E7 protein enhance features characteristic of the "high-risk" HPV E7 oncoproteins. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. O’Connor,et al.  The Human Papillomavirus Type 16 E6 Oncoprotein Can Down-Regulate p53 Activity by Targeting the Transcriptional Coactivator CBP/p300 , 1999, Journal of Virology.

[16]  H. Pitot,et al.  The Human Papillomavirus Type 16 E6 Gene Alone Is Sufficient To Induce Carcinomas in Transgenic Animals , 1999, Journal of Virology.

[17]  D. Lowy,et al.  The region of the HPV E7 oncoprotein homologous to adenovirus E1a and Sv40 large T antigen contains separate domains for Rb binding and casein kinase II phosphorylation. , 1990, The EMBO journal.

[18]  N. Fusenig,et al.  Molecular and cytogenetic analysis of immortalized human primary keratinocytes obtained after transfection with human papillomavirus type 16 DNA. , 1987, Oncogene.

[19]  K. Münger,et al.  The Cytokines Tumor Necrosis Factor-α (TNF-α) and TNF-related Apoptosis-inducing Ligand Differentially Modulate Proliferation and Apoptotic Pathways in Human Keratinocytes Expressing the Human Papillomavirus-16 E7 Oncoprotein* , 2001, The Journal of Biological Chemistry.

[20]  P. Howley,et al.  Human Papillomavirus Type 16 E6 Induces Self-Ubiquitination of the E6AP Ubiquitin-Protein Ligase , 2000, Journal of Virology.

[21]  K. Münger,et al.  Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. , 1989, The EMBO journal.

[22]  P. Howley,et al.  The bovine papillomavirus E6 oncoprotein interacts with paxillin and disrupts the actin cytoskeleton. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[23]  T. Kanda,et al.  Immortalization of primary rat cells by human papillomavirus type 16 subgenomic DNA fragments controlled by the SV40 promoter. , 1988, Virology.

[24]  P. Howley,et al.  The Role of E6AP in the Regulation of p53 Protein Levels in Human Papillomavirus (HPV)-positive and HPV-negative Cells* , 1998, The Journal of Biological Chemistry.

[25]  T. Iftner,et al.  Comparison of the properties of the E6 and E7 genes of low- and high-risk cutaneous papillomaviruses reveals strongly transforming and high Rb-binding activity for the E7 protein of the low-risk human papillomavirus type 1 , 1994, Journal of virology.

[26]  N. Jareborg,et al.  Localization of bovine papillomavirus type 1 E5 protein to transformed basal keratinocytes and permissive differentiated cells in fibropapilloma tissue. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Settleman,et al.  Inhibition of cervical carcinoma cell line proliferation by the introduction of a bovine papillomavirus regulatory gene , 1993, Journal of virology.

[28]  S. S. Lee,et al.  Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Schneider,et al.  Human papillomavirus type 16 DNA cooperates with activated ras in transforming primary cells. , 1987, The EMBO journal.

[30]  P. Beer-Romero,et al.  Antisense targeting of E6AP elevates p53 in HPV-infected cells but not in normal cells , 1997, Oncogene.

[31]  T. Kanda,et al.  Human papillomavirus type 16 transformation of primary human embryonic fibroblasts requires expression of open reading frames E6 and E7 , 1989, Journal of virology.

[32]  M. Scheffner,et al.  A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. , 1991, The EMBO journal.

[33]  M. Willingham,et al.  The E5 oncoprotein of bovine papillomavirus is oriented asymmetrically in Golgi and plasma membranes. , 1989, Virology.

[34]  M. Botchan,et al.  Specific recognition nucleotides and their DNA context determine the affinity of E2 protein for 17 binding sites in the BPV-1 genome. , 1989, Genes & development.

[35]  D. E. Groff,et al.  Genetic analysis of the 3' early region transformation and replication functions of bovine papillomavirus type 1. , 1986, Virology.

[36]  Santhosh K. P. Kumar,et al.  Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[37]  K. Yoshiike,et al.  Transformation of rat 3Y1 cells by human papillomavirus type‐18 DNA , 1988, International journal of cancer.

[38]  D. Lowy,et al.  HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. , 1989, The EMBO journal.

[39]  Kathleen R. Cho,et al.  Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[40]  T. Crook,et al.  Corrigendum: Human papillomavirus E6 proteins bind p53 in vivo and abrogate p53-mediated repression of transcription (The EMBO Journal(1992)11(3045-3052)) , 1992 .

[41]  T. Crook,et al.  Human papillomavirus E6 proteins bind p53 in vivo and abrogate p53‐mediated repression of transcription. , 1992, The EMBO journal.

[42]  E. Harlow,et al.  Cellular targets for transformation by the adenovirus E1A proteins , 1989, Cell.

[43]  W. Zwerschke,et al.  Inactivation of the cdk inhibitor p27KIP1 by the human papillomavirus type 16 E7 oncoprotein. , 1996, Oncogene.

[44]  K. Münger,et al.  Degradation of the Retinoblastoma Tumor Suppressor by the Human Papillomavirus Type 16 E7 Oncoprotein Is Important for Functional Inactivation and Is Separable from Proteasomal Degradation of E7 , 2001, Journal of Virology.

[45]  S. Grossman,et al.  Intracellular localization and DNA-binding properties of human papillomavirus type 18 E6 protein expressed with a baculovirus vector , 1989, Journal of virology.

[46]  J. DiPaolo,et al.  Human papillomavirus type 16 DNA-induced malignant transformation of NIH 3T3 cells , 1986, Journal of virology.

[47]  K. Münger,et al.  The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Schiller,et al.  Human papillomavirus type 16 E6 increases the degradation rate of p53 in human keratinocytes , 1992, Journal of virology.

[49]  J. Huibregtse,et al.  Human Scribble (Vartul) Is Targeted for Ubiquitin-Mediated Degradation by the High-Risk Papillomavirus E6 Proteins and the E6AP Ubiquitin-Protein Ligase , 2000, Molecular and Cellular Biology.

[50]  P. Howley,et al.  Identification of HHR23A as a Substrate for E6-associated Protein-mediated Ubiquitination* , 1999, The Journal of Biological Chemistry.

[51]  A. Levine,et al.  Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53 , 1983, Molecular and cellular biology.

[52]  D. Lowy,et al.  Papillomavirus polypeptides E6 and E7 are zinc-binding proteins , 1989, Journal of virology.

[53]  G. Nuovo,et al.  Isolation of a novel human papillomavirus (type 51) from a cervical condyloma , 1988, Journal of virology.

[54]  V. Garsky,et al.  Protein domains governing interactions between E2F, the retinoblastoma gene product, and human papillomavirus type 16 E7 protein , 1993, Molecular and cellular biology.

[55]  D. Pim,et al.  Alternatively spliced HPV-18 E6* protein inhibits E6 mediated degradation of p53 and suppresses transformed cell growth , 1997, Oncogene.

[56]  M. Scheffner,et al.  The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53 , 1993, Cell.

[57]  Stephen H. Friend,et al.  Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product , 1988, Nature.

[58]  L. Tsai,et al.  Involvement of the cell-cycle inhibitor Cip1/WAF1 and the E1A-associated p300 protein in terminal differentiation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[59]  D. McCance,et al.  Regions of human papillomavirus type 16 E7 oncoprotein required for immortalization of human keratinocytes , 1992, Journal of virology.

[60]  Wen-Hwa Lee,et al.  SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene , 1988, Cell.

[61]  M. von Knebel Doeberitz,et al.  Correlation of modified human papilloma virus early gene expression with altered growth properties in C4-1 cervical carcinoma cells. , 1988, Cancer research.

[62]  M. Yutsudo,et al.  Functional dissociation of transforming genes of human papillomavirus type 16. , 1988, Virology.

[63]  K. Münger,et al.  The human papillomavirus E7 oncoprotein and the cellular transcription factor E2F bind to separate sites on the retinoblastoma tumor suppressor protein , 1993, Journal of virology.

[64]  K. Münger,et al.  Human papillomavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype. , 2001, Cancer research.

[65]  R. Schlegel,et al.  The human papillomavirus type 6 and 16 E5 proteins are membrane-associated proteins which associate with the 16-kilodalton pore-forming protein , 1993, Journal of virology.

[66]  S. Beaudenon,et al.  Plurality of genital human papillomaviruses: characterization of two new types with distinct biological properties. , 1987, Virology.

[67]  A. Ciechanover,et al.  Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin-proteasome system: targeting via ubiquitination of the N-terminal residue , 2000, Oncogene.

[68]  H. Pan,et al.  Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumor suppressor gene function in development. , 1994, Genes & development.

[69]  K. Kinzler,et al.  Oncogenic forms of p53 inhibit p53-regulated gene expression , 1992 .

[70]  E. Fuchs,et al.  Human papillomavirus type 16 alters human epithelial cell differentiation in vitro. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[71]  P. Howley,et al.  The transcriptional transactivation function of wild‐type p53 is inhibited by SV40 large T‐antigen and by HPV‐16 E6 oncoprotein. , 1992, The EMBO journal.

[72]  K. Münger,et al.  Centrosome Abnormalities and Genomic Instability by Episomal Expression of Human Papillomavirus Type 16 in Raft Cultures of Human Keratinocytes , 2001, Journal of Virology.

[73]  M. Scheffner,et al.  A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[74]  K. Münger,et al.  The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. , 1989, Science.

[75]  L. Banks,et al.  Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation , 1999, Oncogene.

[76]  F. Carlotti,et al.  Functional studies of E7 proteins from different HPV types. , 1994, Oncogene.

[77]  J. Trent,et al.  WAF1, a potential mediator of p53 tumor suppression , 1993, Cell.

[78]  D. Wazer,et al.  E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. , 1996, Cancer research.

[79]  K. Münger,et al.  Centrosome abnormalities, genomic instability and carcinogenic progression. , 2001, Biochimica et biophysica acta.

[80]  V. Band,et al.  Loss of p53 protein in human papillomavirus type 16 E6-immortalized human mammary epithelial cells , 1991, Journal of virology.

[81]  A. Alonso,et al.  Binding of human papillomavirus 16 E5 to the 16 kDa subunit c (proteolipid) of the vacuolar H+-ATPase can be dissociated from the E5-mediated epidermal growth factor receptor overactivation , 2000, Oncogene.

[82]  D. McCance,et al.  The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes , 1993, Journal of virology.

[83]  Karl Münger,et al.  Biological activities and molecular targets of the human papillomavirus E7 oncoprotein , 2001, Oncogene.

[84]  R. Schlegel,et al.  The E5 transforming gene of bovine papillomavirus encodes a small, hydrophobic polypeptide. , 1986, Science.

[85]  E. Flores,et al.  The Human Papillomavirus Type 16 E7 Oncogene Is Required for the Productive Stage of the Viral Life Cycle , 2000, Journal of Virology.

[86]  A. Levine,et al.  Post-translational regulation of the 54K cellular tumor antigen in normal and transformed cells , 1981, Molecular and cellular biology.

[87]  D. Wazer,et al.  Immortalization of distinct human mammary epithelial cell types by human papilloma virus 16 E6 or E7. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[88]  P. Howley,et al.  Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. , 1999, Science.

[89]  A. Ciechanover,et al.  The ubiquitin system. , 1998, Annual review of biochemistry.

[90]  R. Weinberg,et al.  The retinoblastoma protein and the regulation of cell cycling. , 1992, Trends in biochemical sciences.

[91]  K. Münger,et al.  Structure-function analysis of the human papillomavirus type 16 E7 oncoprotein , 1992, Journal of virology.

[92]  D. DiMaio,et al.  Tumorigenic transformation of murine keratinocytes by the E5 genes of bovine papillomavirus type 1 and human papillomavirus type 16 , 1991, Journal of virology.

[93]  K. Münger,et al.  The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus E1A , 1988, Cell.

[94]  T. Tlsty,et al.  Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. , 1994, Genes & development.

[95]  D. Galloway,et al.  Destabilization of the Retinoblastoma Tumor Suppressor by Human Papillomavirus Type 16 E7 Is Not Sufficient To Overcome Cell Cycle Arrest in Human Keratinocytes , 2001, Journal of Virology.

[96]  D. DiMaio,et al.  The platelet-derived growth factor beta receptor as a target of the bovine papillomavirus E5 protein. , 2000, Cytokine & growth factor reviews.

[97]  K. Vousden,et al.  A point mutational analysis of human papillomavirus type 16 E7 protein , 1989, Journal of virology.

[98]  B. Stillman,et al.  Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. , 1997, Genes & development.

[99]  D. Lowy,et al.  The E7 open reading frame of human papillomavirus type 16 encodes a transforming gene. , 1988, Oncogene research.

[100]  E. Auvinen,et al.  Enhancement of EGF- and PMA-mediated MAP kinase activation in cells expressing the human papillomavirus type 16 E5 protein , 1997, Oncogene.

[101]  P. Howley,et al.  Physical Interaction between Specific E2 and Hect E3 Enzymes Determines Functional Cooperativity* , 1997, The Journal of Biological Chemistry.

[102]  K. Münger,et al.  The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. , 1997, Genes & development.

[103]  J. Shay,et al.  A transcriptionally active DNA-binding site for human p53 protein complexes , 1992, Molecular and cellular biology.

[104]  C. Woodworth,et al.  Characterization of Normal Human Exocervical Epithelial Cells Immortalized in Vitro by Papillonâ „ ¢ virusTypes 16 and 18 DNA 1 , 2006 .

[105]  J. McDougall,et al.  Characterization of primary human keratinocytes transformed by human papillomavirus type 18 , 1988, Journal of virology.

[106]  K. Münger,et al.  The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[107]  D. DiMaio,et al.  Genetic and biochemical definition of the bovine papillomavirus E5 transforming protein. , 1987, The EMBO journal.

[108]  Martin Scheffner,et al.  Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade , 1995, Nature.

[109]  T. R. Broker,et al.  Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. , 1995, Genes & development.

[110]  S. Grossman,et al.  E6 protein of human papillomavirus type 18 binds zinc. , 1989, Oncogene.

[111]  D. Lowy,et al.  E5 open reading frame of bovine papillomavirus type 1 encodes a transforming gene , 1986, Journal of virology.

[112]  P. Howley,et al.  Repression of the Integrated Papillomavirus E6/E7 Promoter Is Required for Growth Suppression of Cervical Cancer Cells , 2000, Journal of Virology.

[113]  J. McDougall,et al.  Telomerase activation by the E6 gene product of human papillomavirus type 16 , 1996, Nature.

[114]  D. DiMaio,et al.  Translation of open reading frame E5 of bovine papillomavirus is required for its transforming activity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[115]  C. Turner,et al.  Association of Bovine Papillomavirus Type 1 E6 oncoprotein with the focal adhesion protein paxillin through a conserved protein interaction motif , 1998, Oncogene.

[116]  R. Brent,et al.  Dimerization of the human papillomavirus E7 oncoprotein in vivo. , 1995, Virology.

[117]  L. Banks,et al.  The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. , 1992, Oncogene.

[118]  Arnold J. Levine,et al.  The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53 , 1990, Cell.

[119]  P. Howley,et al.  Suppression of cellular proliferation by the papillomavirus E2 protein , 1995, Journal of virology.

[120]  M. von Knebel Doeberitz,et al.  p53-independent growth regulation of cervical cancer cells by the papillomavirus E6 oncogene. , 1996, Oncogene.

[121]  D. Lowy,et al.  The full-length E6 protein of human papillomavirus type 16 has transforming and trans-activating activities and cooperates with E7 to immortalize keratinocytes in culture , 1991, Journal of virology.

[122]  A. Ciechanover,et al.  Complete switch from Mdm2 to human papillomavirus E6-mediated degradation of p53 in cervical cancer cells. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[123]  J. Mazzarelli,et al.  Oligomerization properties of the viral oncoproteins adenovirus E1A and human papillomavirus E7 and their complexes with the retinoblastoma protein. , 2000, Biochemistry.

[124]  M. Scheffner,et al.  Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53 , 1993, Molecular and cellular biology.

[125]  D. Pim,et al.  Comparison of the in vitro transforming activities of human papillomavirus types. , 1988, The EMBO journal.

[126]  K. Münger,et al.  Analysis of the p53-mediated G1 growth arrest pathway in cells expressing the human papillomavirus type 16 E7 oncoprotein , 1997, Journal of virology.

[127]  M. Yaniv,et al.  Expression of the papillomavirus E2 protein in HeLa cells leads to apoptosis , 1997, The EMBO journal.

[128]  S. Cole,et al.  Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome. Phylogeny of papillomaviruses and repeated structure of the E6 and E7 gene products. , 1987, Journal of molecular biology.

[129]  H. Sato,et al.  Expression of human papillomavirus type 16 E7 gene induces DNA synthesis of rat 3Y1 cells. , 1989, Virology.

[130]  K. Münger,et al.  Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[131]  D. Albert,et al.  Apoptosis or retinoblastoma: alternative fates of photoreceptors expressing the HPV-16 E7 gene in the presence or absence of p53. , 1994, Genes & development.

[132]  D. Patel,et al.  The E6 protein of human papillomavirus type 16 binds to and inhibits co‐activation by CBP and p300 , 1999, The EMBO journal.

[133]  J. D. Benson,et al.  Papillomavirus E2 induces senescence in HPV‐positive cells via pRB‐ and p21CIP‐dependent pathways , 2000, The EMBO journal.

[134]  R. Schlegel,et al.  Quantitative keratinocyte assay detects two biological activities of human papillomavirus DNA and identifies viral types associated with cervical carcinoma. , 1988, The EMBO journal.

[135]  M Fujita,et al.  Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[136]  L. Banks,et al.  E3-Ubiquitin Ligase/E6-AP Links Multicopy Maintenance Protein 7 to the Ubiquitination Pathway by a Novel Motif, the L2G Box* , 1998, The Journal of Biological Chemistry.

[137]  J. DiPaolo,et al.  Transformation of human fibroblasts and keratinocytes with human papillomavirus type 16 DNA , 1987, Journal of virology.

[138]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[139]  J. T. Thomas,et al.  Human papillomavirus type 31 oncoproteins E6 and E7 are required for the maintenance of episomes during the viral life cycle in normal human keratinocytes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[140]  R. Schlegel,et al.  The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes , 1989, Journal of virology.

[141]  M. Yaniv,et al.  The BPV1‐E2 trans‐acting protein can be either an activator or a repressor of the HPV18 regulatory region. , 1987, The EMBO journal.

[142]  L. Banks,et al.  Multi-PDZ Domain Protein MUPP1 Is a Cellular Target for both Adenovirus E4-ORF1 and High-Risk Papillomavirus Type 18 E6 Oncoproteins , 2000, Journal of Virology.