A General Fractional Porous Medium Equation

We develop a theory of existence and uniqueness for the following porous medium equation with fractional diffusion,    @u @t + (−�) �/2 (|u| m−1 u) = 0, x ∈ R N , t > 0, u(x,0) = f(x), x ∈ R N . We consider data f ∈ L 1 (R N ) and all exponents 0 0. Existence and uniqueness of a weak solution is established for m > m∗ = (N − �)+/N, giving rise to an L 1 -contraction semigroup. In addition, we obtain the main qualitative properties of these solutions. In the lower range 0 < m ≤ m∗ existence and uniqueness of solutions with good properties happen under some restrictions, and the properties are different from the case above m∗. We also study the dependence of solutions on f,m and �. Moreover, we consider the above questions for the problem posed in a bounded domain.

[1]  L. Caffarelli,et al.  The initial trace of a solution of the porous medium equation , 1983 .

[2]  H. Schubert,et al.  O. D. Kellogg, Foundations of Potential Theory. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 31). X + 384 S. m. 30 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 32,– , 1969 .

[3]  G. H. Hardy,et al.  Some properties of fractional integrals. I. , 1928 .

[4]  J. Vázquez The Porous Medium Equation: Mathematical Theory , 2006 .

[5]  Sunghoon Kim,et al.  Geometric property of the Ground State Eigenfunction for Cauchy Process , 2011, 1105.3283.

[6]  R. Getoor,et al.  Some theorems on stable processes , 1960 .

[7]  M. Crandall An Introduction to Evolution Governed by Accretive Operators , 1976 .

[8]  S. Sobolev On a theorem in functional analysis , 1938 .

[9]  R. Wolpert Lévy Processes , 2000 .

[10]  Luis Silvestre,et al.  Regularity of the obstacle problem for a fractional power of the laplace operator , 2007 .

[11]  M. Crandall,et al.  Regularizing effects for ut + Aϑ(u) = 0 in L1 , 1982 .

[12]  Wenxiong Chen,et al.  Classification of solutions for an integral equation , 2006 .

[13]  J. Vázquez,et al.  Nonlinear Porous Medium Flow with Fractional Potential Pressure , 2010, 1001.0410.

[14]  Carlos E. Kenig,et al.  The local regularity of solutions of degenerate elliptic equations , 1982 .

[15]  Michael G. Crandall,et al.  Regularizing Effects of Homogeneous Evolution Equations , 1980 .

[16]  L. Caffarelli,et al.  Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation , 2006, math/0608447.

[17]  Elliott H. Lieb,et al.  Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities , 1983 .

[18]  Andrew J. Majda,et al.  A simple one-dimensional model for the three-dimensional vorticity equation , 1985 .

[19]  A. Cotsiolis,et al.  Sharp Sobolev type inequalities for higher fractional derivatives , 2002 .

[20]  N. Varopoulos,et al.  Hardy-Littlewood theory for semigroups , 1985 .

[21]  Louis Dupaigne,et al.  Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations , 2010, 1004.1906.

[22]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[23]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[24]  Xavier Cabre,et al.  Positive solutions of nonlinear problems involving the square root of the Laplacian , 2009, 0905.1257.

[25]  Strong Solutions in L1 of Degenerate Parabolic Equations , 1995 .

[26]  Further Properties of a Continuum of Model Equations with Globally Defined Flux , 1998 .

[27]  A. Volberg,et al.  Global well-posedness for the critical 2D dissipative quasi-geostrophic equation , 2007 .

[28]  M. Jara Hydrodynamic limit of particle systems with long jumps , 2008, 0805.1326.

[29]  V. Liskevich,et al.  Some problems on Markov semigroups , 1996 .

[30]  R. Monneau,et al.  Nonlinear Diffusion of Dislocation Density and Self-Similar Solutions , 2008, 0812.4979.

[31]  P. R. Stinga,et al.  Extension Problem and Harnack's Inequality for Some Fractional Operators , 2009, 0910.2569.

[32]  Sunghoon Kim,et al.  H\"older Estimates for Singular Non-local Parabolic Equations , 2011, 1105.3286.

[33]  C. Brändle,et al.  A concave—convex elliptic problem involving the fractional Laplacian , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[34]  T. Komorowski,et al.  Limit theorems for additive functionals of a Markov chain , 2008, 0809.0177.

[35]  L. Caffarelli,et al.  Continuity of the temperature in boundary heat control problems , 2010 .

[36]  J. V'azquez,et al.  Classical solutions for a logarithmic fractional diffusion equation , 2012, 1205.2223.

[37]  J. Vázquez The Porous Medium Equation , 2006 .

[38]  E. Jakobsen,et al.  Entropy solution theory for fractional degenerate convection–diffusion equations , 2010, 1005.4938.

[39]  Juan Luis Vázquez,et al.  Nonlinear Diffusion with Fractional Laplacian Operators , 2012 .

[40]  L. Evans Application of Nonlinear Semigroup Theory to Certain Partial Differential Equations , 1978 .

[41]  David Applebaum,et al.  Lévy Processes and Stochastic Calculus by David Applebaum , 2009 .

[42]  F. Quirós,et al.  A P ] 1 4 Ja n 20 10 A fractional porous medium equation by , 2010 .

[43]  Yannick Sire,et al.  Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates , 2010, 1012.0867.

[44]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[45]  Luis Caffarelli,et al.  Asymptotic behaviour of a porous medium equation with fractional diffusion , 2010, 1004.1096.

[46]  A. Córdoba,et al.  Formation of singularities for a transport equation with nonlocal velocity , 2005, 0706.1969.

[47]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[48]  Michael G. Crandall,et al.  GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES, , 1971 .