Geospatial immune variability illuminates differential evolution of lung adenocarcinoma

Remarkable progress in molecular analyses has improved our understanding of the evolution of cancer cells toward immune escape 1 – 5 . However, the spatial configurations of immune and stromal cells, which may shed light on the evolution of immune escape across tumor geographical locations, remain unaddressed. We integrated multiregion exome and RNA-sequencing (RNA-seq) data with spatial histology mapped by deep learning in 100 patients with non-small cell lung cancer from the TRACERx cohort 6 . Cancer subclones derived from immune cold regions were more closely related in mutation space, diversifying more recently than subclones from immune hot regions. In TRACERx and in an independent multisample cohort of 970 patients with lung adenocarcinoma, tumors with more than one immune cold region had a higher risk of relapse, independently of tumor size, stage and number of samples per patient. In lung adenocarcinoma, but not lung squamous cell carcinoma, geometrical irregularity and complexity of the cancer–stromal cell interface significantly increased in tumor regions without disruption of antigen presentation. Decreased lymphocyte accumulation in adjacent stroma was observed in tumors with low clonal neoantigen burden. Collectively, immune geospatial variability elucidates tumor ecological constraints that may shape the emergence of immune-evading subclones and aggressive clinical phenotypes. Multiregion spatial histology, exome and transcriptome data from patients with non-small cell lung cancer suggest that cancer subclones from immune cold regions diversify later than subclones from immune hot regions

Nicolai J. Birkbak | Angela E. Leek | Z. Szallasi | R. Booton | A. Nicholson | I. Csabai | S. Loi | H. Davies | P. Van Loo | R. Schwarz | N. McGranahan | A. Stewart | C. Swanton | J. Nicod | G. Wilson | S. Jordan | K. Kerr | A. Kidd | K. Blyth | Yinyin Yuan | K. AbdulJabbar | D. Moore | R. Salgado | C. Hiley | S. Raza | R. Rosenthal | M. Jamal-Hanjani | S. Veeriah | A. Akarca | T. Lund | M. Al Bakir | L. Zapata | L. Officer | M. Sereno | Claire Smith | A. Hackshaw | T. Marafioti | S. Quezada | J. L. Le Quesne | N. Birkbak | Peter D. Schmid | B. Campbell | K. Peggs | M. Wilcox | M. Dietzen | A. Alzetani | J. Herrero | C. Dive | E. Lim | F. Blackhall | V. Spanswick | J. Hartley | S. Tenconi | K. Moore | C. Lindsay | M. Falzon | C. Ferris | K. Enfield | E. Kilgour | T. Watkins | S. Janes | M. Chetty | C. Abbosh | L. Martinson | Joan Riley | S. Lee | T. Ahmad | E. Borg | N. Panagiotopoulos | Asia Ahmed | Y. Summers | R. Shah | P. Crosbie | B. Naidu | G. Middleton | G. Langman | A. Nakas | S. Rathinam | G. Anand | P. Russell | V. Ezhil | V. Prakash | M. Kornaszewska | R. Attanoos | Haydn Adams | H. Lowe | S. Lock | Y. Ngai | J. Shaw | K. Litchfield | E. Nye | S. Boeing | M. Skrzypski | M. Greco | J. Bury | M. Sheaff | M. Krebs | D. Rothwell | Andrew Robinson | C. Ottensmeier | R. Mendes | N. Navani | J. Tugwood | J. Edwards | L. Priest | R. Califano | Pat Gorman | R. Hynds | J. Goldman | R. Stone | Tamara Denner | A. Georgiou | D. Papadatos-Pastos | D. Carnell | J. George | J. Choudhary | P. Krysiak | K. Rammohan | E. Fontaine | M. Evison | Stuart Moss | P. Bishop | H. Doran | Rachael Waddington | J. Novasio | J. Rogan | E. Smith | G. Brady | Francesca Chemi | J. Pierce | H. Bancroft | A. Kerr | S. Kadiri | M. Djearaman | W. Monteiro | H. Marshall | Louise Nelson | L. Primrose | Joy Miller | K. Buchan | Fiona Morgan | M. Mackenzie | Sean Smith | N. Gower | S. Chee | Benjamin Johnson | P. De Sousa | A. Rice | H. Raubenheimer | H. Bhayani | Morag Hamilton | L. Ambrose | Hema Chavan | K. Lau | J. Conibear | T. Light | S. Danson | Jennifer Hill | S. Matthews | Yota Kitsanta | K. Suvarna | M. Shackcloth | J. Gosney | Sarah L. Feeney | J. Asante-Siaw | E. Ghorani | J. Reading | A. Dawson | S. Bandula | N. Kostoulas | L. Socci | Elena Hoxha | M. Scarci | S. Begum | S. Busacca | J. Brožík | Fiona G. Taylor | A. Kirk | Maise Al Bakir | Katey S. S. Enfield | D. Fennell | James W. Holding | Mark R. Lovett | Jack Davies Hodgkinson | Jessica E. Wallen | Martin Forster | D. Biswas | A. Huebner | Yin Wu | M. W. Sunderland | L. Ensell | A. Karamani | Maryam Razaq | Cristina Naceur-Lombardelli | M. Akther | Haoran Zhai | Nnennaya Kannu | M. R. de Massy | E. Hatipoglu | Stephanie Ogwuru | K. Ryanna | Mohamad Tuffail | A. Bajaj | N. Carey | Gillian Price | Kayleigh Gilbert | A. Chaturvedi | F. Granato | Vijay Joshi | M. Carter | F. Gomes | A. Montero | Robert S George | D. Patrini | Reena Khiroya | P. Shaw | E. Bertoja | E. Hoogenboom | A. Sharp | Cristina Rodrigues | O. Pressey | H. Dhanda | A. Mani | Daniel Kaniu | S. Booth | L. Lim | J. Rao | R. Young | Joanne Barker | C. Dick | M. Asif | J. Butler | Rocco Bilanca | Eric Lim | Mohammed Khalil | Elizabeth Manzano | M. Dióssy | S. Bola | Magali N. Taylor | Junaid Choudhary | S. Dubois-Marshall | Shirley Palmer | Heather Cheyne | Nicola Totten | Mpho Malima | K. Lloyd | T. Horey | B. Chain | Jason Lester | P. Taylor | C. Swanton | P. Gorman | Stephan Beck | N. Mcgranahan | M. Escudero | A. Rowan | David S. Lawrence | M. Hayward | Sajid Khan | E. Shaw | P. Fisher | H. Aerts | A. Devaraj | Emma C Colliver | C. Puttick | H. Cheyne | S. Ward | Nicholas McGranahan | F. Kibutu | L. Joseph | Nádia Fernandes | Pratibha Shah | R. Stephens | M. al Bakir | J. Le Quesne | Akshay J. Patel | C. Smith | Charles Swanton | Sergio A. Quezada | John Le Quesne | Charles Mariam John Allan Sergio A. Nicholas Rachel Crispi Swanton Jamal-Hanjani Le Quesne Hackshaw | Martin D. Forster | G. Wilson | R. Shah | Javier Herrero | Fiona G. Taylor | Angeliki Karamani | Julius Asante-Siaw | Juliette Novasio | Paul Taylor | C. Naceur-Lombardelli | John Le Quesne

[1]  S. Zucker,et al.  Evaluating the fractal dimension of profiles. , 1989, Physical review. A, General physics.

[2]  J. Whitsett,et al.  Monoclonal antibody to thyroid transcription factor-1: production, characterization, and usefulness in tumor diagnosis. , 1996, Hybridoma.

[3]  B O Palsson,et al.  Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Javier Jiménez,et al.  Geometry and clustering of intense structures in isotropic turbulence , 2004, Journal of Fluid Mechanics.

[5]  J. Massagué,et al.  TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. , 2005, Cancer cell.

[6]  R. Tavares,et al.  Comparison of Thyroid Transcription Factor-1 Expression by 2 Monoclonal Antibodies in Pulmonary and Nonpulmonary Primary Tumors , 2010, Applied immunohistochemistry & molecular morphology : AIMM.

[7]  L. Sorokin The impact of the extracellular matrix on inflammation , 2010, Nature Reviews Immunology.

[8]  Pierre Validire,et al.  Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. , 2012, The Journal of clinical investigation.

[9]  U. Pastorino,et al.  &Dgr;Np63 (p40) and Thyroid Transcription Factor-1 Immunoreactivity on Small Biopsies or Cellblocks for Typing Non-small Cell Lung Cancer: A Novel Two-Hit, Sparing-Material Approach , 2012, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[10]  Steven J. M. Jones,et al.  Comprehensive genomic characterization of squamous cell lung cancers , 2012, Nature.

[11]  J. Wolf,et al.  Widespread evidence for incipient ecological speciation: a meta-analysis of isolation-by-ecology. , 2013, Ecology letters.

[12]  J. Buhmann,et al.  Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry , 2014, Nature Methods.

[13]  Steven J. M. Jones,et al.  Comprehensive molecular profiling of lung adenocarcinoma , 2014, Nature.

[14]  D. Fearon,et al.  T cell exclusion, immune privilege, and the tumor microenvironment , 2015, Science.

[15]  Yinyin Yuan,et al.  Modelling the spatial heterogeneity and molecular correlates of lymphocytic infiltration in triple-negative breast cancer , 2015, Journal of The Royal Society Interface.

[16]  G. Giaccone,et al.  Refining the treatment of NSCLC according to histological and molecular subtypes , 2015, Nature Reviews Clinical Oncology.

[17]  Sidra Nawaz,et al.  Beyond immune density: critical role of spatial heterogeneity in estrogen receptor-negative breast cancer , 2015, Modern Pathology.

[18]  J. Reis-Filho,et al.  Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival , 2016, Oncotarget.

[19]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[20]  Nicolai J. Birkbak,et al.  Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade , 2016, Science.

[21]  N. Rajpoot,et al.  Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images , 2016, IEEE Transactions on Medical Imaging.

[22]  Nasir M. Rajpoot,et al.  Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images , 2016, IEEE Trans. Medical Imaging.

[23]  Angela E. Leek,et al.  Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution , 2017, Cell.

[24]  Carsten Denkert,et al.  Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothe , 2017, Advances in anatomic pathology.

[25]  Nicolai J. Birkbak,et al.  Tracking the Evolution of Non‐Small‐Cell Lung Cancer , 2017, The New England journal of medicine.

[26]  Hans Clevers,et al.  Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer , 2017, The Journal of experimental medicine.

[27]  Patrick Danaher,et al.  Gene expression markers of Tumor Infiltrating Leukocytes , 2016, Journal of Immunotherapy for Cancer.

[28]  T. Rynearson,et al.  Evidence for environmental and ecological selection in a microbe with no geographic limits to gene flow , 2017, Proceedings of the National Academy of Sciences.

[29]  I. Mellman,et al.  Elements of cancer immunity and the cancer–immune set point , 2017, Nature.

[30]  Jack Cuzick,et al.  Relevance of Spatial Heterogeneity of Immune Infiltration for Predicting Risk of Recurrence After Endocrine Therapy of ER+ Breast Cancer , 2018, Journal of the National Cancer Institute.

[31]  P. A. Futreal,et al.  Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer , 2018, Nature Communications.

[32]  Salil S. Bhate,et al.  Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging , 2017, Cell.

[33]  Inna Kuperstein,et al.  Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. , 2018, Cancer cell.

[34]  Sean C. Bendall,et al.  A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging , 2018, Cell.

[35]  Marco Punta,et al.  Microenvironmental niche divergence shapes BRCA1-dysregulated ovarian cancer morphological plasticity , 2018, Nature Communications.

[36]  P. Bousso,et al.  The immune system profoundly restricts intratumor genetic heterogeneity , 2018, Science Immunology.

[37]  David B. A. Epstein,et al.  Micro‐Net: A unified model for segmentation of various objects in microscopy images , 2018, Medical Image Anal..

[38]  R. Spriggs,et al.  In situ growth in early lung adenocarcinoma may represent precursor growth or invasive clone outgrowth—a clinically relevant distinction , 2019, Modern Pathology.

[39]  Nicolai J. Birkbak,et al.  Neoantigen-directed immune escape in lung cancer evolution , 2019, Nature.

[40]  Lung Cancer Evolution: What's Immunity Got to Do with It? , 2019, Cancer cell.