Distance distributions in ensembles of irregular low-density parity-check codes

We derive asymptotic expressions for the average distance distributions in ensembles of irregular low-density parity-check (LDPC) codes. The ensembles are defined by matrices with given profiles of column and row sums.

[1]  I. J. Good,et al.  The enumeration of arrays and a generalization related to contingency tables , 1977, Discret. Math..

[2]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[3]  M. Shokrollahi,et al.  Capacity-achieving sequences , 2001 .

[4]  Shlomo Shamai,et al.  Improved upper bounds on the ensemble performance of ML decoded low density parity check codes , 2000, IEEE Communications Letters.

[5]  Rudiger Urbanke,et al.  Weight distributions: how deviant can you be? , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[6]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[7]  R. Gallager Information Theory and Reliable Communication , 1968 .

[8]  Patrick Eugene O'Neil Asymptotics and random matrices with row-sum and column sum-restrictions , 1969 .

[9]  David Burshtein,et al.  Bounds on the maximum-likelihood decoding error probability of low-density parity-check codes , 2000, IEEE Trans. Inf. Theory.

[10]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[11]  Daniel A. Spielman,et al.  Analysis of low density codes and improved designs using irregular graphs , 1998, STOC '98.

[12]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[13]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[14]  Simon Litsyn,et al.  On ensembles of low-density parity-check codes: Asymptotic distance distributions , 2002, IEEE Trans. Inf. Theory.