Distributionally Robust Mixed Integer Linear Programs: Persistency Models with Applications

In this paper, we review recent advances in the distributional analysis of mixed integer linear programs with random objective coefficients. Suppose that the probability distribution of the objective coefficients is incompletely specified and characterized through partial moment information. Conic programming methods have been recently used to find distributionally robust bounds for the expected optimal value of mixed integer linear programs over the set of all distributions with the given moment information. These methods also provide additional information on the probability that a binary variable attains a value of 1 in the optimal solution for 0–1 integer linear programs. This probability is defined as the persistency of a binary variable. In this paper, we provide an overview of the complexity results for these models, conic programming formulations that are readily implementable with standard solvers and important applications of persistency models. The main message that we hope to convey through this review is that tools of conic programming provide important insights in the probabilistic analysis of discrete optimization problems. These tools lead to distributionally robust bounds with applications in activity networks, vertex packing, discrete choice models, random walks and sequencing problems, and newsvendor problems.

[1]  Stephen P. Boyd,et al.  Generalized Chebyshev Bounds via Semidefinite Programming , 2007, SIAM Rev..

[2]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[3]  Svante Linusson,et al.  A proof of Parisi’s conjecture on the random assignment problem , 2003, math/0303214.

[4]  J. Steele Probability theory and combinatorial optimization , 1987 .

[5]  George B. Kleindorfer,et al.  Bounding Distributions for a Stochastic Acyclic Network , 1971, Oper. Res..

[6]  Melvyn Sim,et al.  From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization , 2010, Oper. Res..

[7]  W. J. Studden,et al.  Tchebycheff Systems: With Applications in Analysis and Statistics. , 1967 .

[8]  S. H. Lu,et al.  Roof duality for polynomial 0–1 optimization , 1987, Math. Program..

[9]  Chung-Piaw Teo,et al.  Mixed 0-1 Linear Programs Under Objective Uncertainty: A Completely Positive Representation , 2009, Oper. Res..

[10]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[11]  W. Whitt On approximations for queues, I: Extremal distributions , 1984, AT&T Bell Laboratories Technical Journal.

[12]  Panos M. Pardalos,et al.  Random assignment problems , 2009, Eur. J. Oper. Res..

[13]  Herbert E. Scarf,et al.  A Min-Max Solution of an Inventory Problem , 1957 .

[14]  Van Slyke,et al.  MONTE CARLO METHODS AND THE PERT PROBLEM , 1963 .

[15]  Chung-Piaw Teo,et al.  Persistency Model and Its Applications in Choice Modeling , 2009, Manag. Sci..

[16]  D. Malcolm,et al.  Application of a Technique for Research and Development Program Evaluation , 1959 .

[17]  G. Parisi A Conjecture on random bipartite matching , 1998, cond-mat/9801176.

[18]  John R. Birge,et al.  Bounds on Expected Project Tardiness , 1995, Oper. Res..

[19]  Xuan Vinh Doan,et al.  Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion , 2010, Math. Oper. Res..

[20]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[21]  Yuval Peres,et al.  Resistance Bounds for First-Passage Percolation and Maximum Flow , 1999, J. Comb. Theory, Ser. A.

[22]  A. Shapiro ON DUALITY THEORY OF CONIC LINEAR PROBLEMS , 2001 .

[23]  Ioana Popescu,et al.  Robust Mean-Covariance Solutions for Stochastic Optimization , 2007, Oper. Res..

[24]  Hanif D. Sherali,et al.  Persistency in 0-1 Polynomial Programming , 1998, Math. Oper. Res..

[25]  Xuan Vinh Doan,et al.  On the Complexity of Nonoverlapping Multivariate Marginal Bounds for Probabilistic Combinatorial Optimization Problems , 2012, Oper. Res..

[26]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .

[27]  Bajis M. Dodin,et al.  Bounding the Project Completion Time Distribution in PERT Networks , 1985, Oper. Res..

[28]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[29]  A. Berman,et al.  Completely Positive Matrices , 2003 .

[30]  Rolf H. Möhring,et al.  Scheduling under Uncertainty: Bounding the Makespan Distribution , 2001, Computational Discrete Mathematics.

[31]  Melvyn Sim,et al.  Distributionally Robust Optimization and Its Tractable Approximations , 2010, Oper. Res..

[32]  Mirjam Dür,et al.  Copositive Programming – a Survey , 2010 .

[33]  W. Whitt Approximations for departure processes and queues in series , 1984 .

[34]  M. Mézard,et al.  Replicas and optimization , 1985 .

[35]  I. Olkin,et al.  Multivariate Chebyshev Inequalities , 1960 .

[36]  Etienne de Klerk,et al.  Solving Standard Quadratic Optimization Problems via Linear, Semidefinite and Copositive Programming , 2002, J. Glob. Optim..

[37]  Jean B. Lasserre,et al.  A "Joint+Marginal" Approach to Parametric Polynomial Optimization , 2009, SIAM J. Optim..

[38]  B. Prabhakar,et al.  Proofs of the Parisi and Coppersmith‐Sorkin random assignment conjectures , 2005 .

[39]  L. Kantorovich On the Translocation of Masses , 2006 .

[40]  J. Michael Harrison,et al.  Multi-Resource Investment Strategies: Operational Hedging Under Demand Uncertainty , 1997, Eur. J. Oper. Res..

[41]  Shuzhong Zhang,et al.  On Cones of Nonnegative Quadratic Functions , 2003, Math. Oper. Res..

[42]  Dimitris Bertsimas,et al.  Probabilistic Combinatorial Optimization: Moments, Semidefinite Programming, and Asymptotic Bounds , 2004, SIAM J. Optim..

[43]  Jane N. Hagstrom,et al.  Computational complexity of PERT problems , 1988, Networks.

[44]  Chung-Piaw Teo,et al.  Choice Prediction With Semidefinite Optimization When Utilities are Correlated , 2012, IEEE Transactions on Automatic Control.

[45]  Morris Skibinsky,et al.  Covariance spaces for measures on polyhedral sets , 1992 .

[46]  J. Michael Steele,et al.  The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .

[47]  L. Kantorovitch,et al.  On the Translocation of Masses , 1958 .

[48]  D. Aldous The ζ(2) limit in the random assignment problem , 2000, Random Struct. Algorithms.

[49]  Alberto Seeger,et al.  A Variational Approach to Copositive Matrices , 2010, SIAM Rev..

[50]  J. Beardwood,et al.  The shortest path through many points , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[51]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[52]  Ioana Popescu,et al.  On the Relation Between Option and Stock Prices: A Convex Optimization Approach , 2002, Oper. Res..

[53]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[54]  R. A. Bowman Efficient estimation of arc criticalities in stochastic activity networks , 1995 .

[55]  Isaac Meilijson,et al.  Convex majorization with an application to the length of critical paths , 1979, Journal of Applied Probability.

[56]  S. Rachev,et al.  Mass transportation problems , 1998 .

[57]  O. Mangasarian,et al.  A variable-complexity norm maximization problem , 1986 .

[58]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[59]  Richard M. Van Slyke,et al.  Letter to the Editor---Monte Carlo Methods and the PERT Problem , 1963 .

[60]  Javier Peña,et al.  A Conic Programming Approach to Generalized Tchebycheff Inequalities , 2005, Math. Oper. Res..

[61]  László Lovász,et al.  Energy of Convex Sets, Shortest Paths, and Resistance , 2001, J. Comb. Theory, Ser. A.

[62]  Pierre Hansen,et al.  Roof duality, complementation and persistency in quadratic 0–1 optimization , 1984, Math. Program..

[63]  Xuan Vinh Doan,et al.  On the Complexity of Non-Overlapping Multivariate Marginal Bounds for Probabilistic Combinatorial Optimization Problems , 2010 .

[64]  Dimitris Bertsimas,et al.  Persistence in discrete optimization under data uncertainty , 2006, Math. Program..

[65]  Gideon Weiss Stochastic bounds on distributions of optimal value functions with applications to pert, network flows and reliability , 1984, Ann. Oper. Res..

[66]  Katta G. Murty,et al.  Some NP-complete problems in quadratic and nonlinear programming , 1987, Math. Program..

[67]  Richard M. Karp,et al.  A Patching Algorithm for the Nonsymmetric Traveling-Salesman Problem , 1979, SIAM J. Comput..

[68]  James E. Smith,et al.  Generalized Chebychev Inequalities: Theory and Applications in Decision Analysis , 1995, Oper. Res..

[69]  Jean-Philippe Vial,et al.  Robust Optimization , 2021, ICORES.

[70]  Samuel Burer,et al.  On the copositive representation of binary and continuous nonconvex quadratic programs , 2009, Math. Program..

[71]  Joseph Naor,et al.  Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality , 1993, Math. Program..

[72]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[73]  Bajis M. Dodin,et al.  Approximating the Criticality Indices of the Activities in PERT Networks , 1985 .

[74]  Daniel Kuhn,et al.  Distributionally robust joint chance constraints with second-order moment information , 2011, Mathematical Programming.

[75]  Immanuel M. Bomze,et al.  Copositive optimization - Recent developments and applications , 2012, Eur. J. Oper. Res..

[76]  P. H. Diananda On non-negative forms in real variables some or all of which are non-negative , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[77]  D. R. Fulkerson Expected Critical Path Lengths in PERT Networks , 1962 .

[78]  W. K. Haneveld Robustness against dependence in PERT: An application of duality and distributions with known marginals , 1986 .

[79]  J. Lasserre Bounds on measures satisfying moment conditions , 2002 .

[80]  Phelim P. Boyle,et al.  Bounds on contingent claims based on several assets , 1997 .

[81]  Qingxia Kong,et al.  Scheduling Arrivals to a Stochastic Service Delivery System Using Copositive Cones , 2010, Oper. Res..