Global well-posedness to the two-dimensional incompressible vorticity equation in the half plane
暂无分享,去创建一个
Quansen Jiu | Wanwan Zhang | You Li | You Li | Q. Jiu | Wanwan Zhang
[1] P. Constantin,et al. Global Weak Solutions for SQG in Bounded Domains , 2016, 1612.02489.
[2] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[3] L. Ryzhik,et al. Finite time singularity for the modified SQG patch equation , 2016 .
[4] Charles Fefferman,et al. Growth of solutions for QG and 2D Euler equations , 2001 .
[5] A. Majda,et al. Concentrations in regularizations for 2-D incompressible flow , 1987 .
[6] Luis Vega,et al. Well-posedness of the initial value problem for the Korteweg-de Vries equation , 1991 .
[7] Tosio Kato,et al. Liapunov functions and monotonicity in the Navier-Stokes equation , 1990 .
[8] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[9] Si-ming He,et al. Small-scale creation for solutions of the SQG equation , 2019, Duke Mathematical Journal.
[10] P. Constantin,et al. Local and global strong solutions for SQG in bounded domains , 2017, Physica D: Nonlinear Phenomena.
[11] Javier G'omez-Serrano,et al. Global Smooth Solutions for the Inviscid SQG Equation , 2016, 1603.03325.
[12] Yasunori Maekawa. Solution formula for the vorticity equations in the half plane with application to high vorticity creation at zero viscosity limit , 2011, Advances in Differential Equations.
[13] Dong Li,et al. On Kato–Ponce and fractional Leibniz , 2016, Revista Matemática Iberoamericana.
[14] W. Wolibner. Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long , 1933 .
[15] Mario Pulvirenti,et al. Mathematical Theory of Incompressible Nonviscous Fluids , 1993 .
[16] Tosio Kato,et al. Commutator estimates and the euler and navier‐stokes equations , 1988 .
[17] L. Nirenberg,et al. On elliptic partial differential equations , 1959 .
[18] A. Kiselev,et al. Blow up for the 2D Euler Equation on Some Bounded Domains , 2014, 1406.3648.
[19] V. Hoang,et al. No Local Double Exponential Gradient Growth in Hyperbolic Flow for the Euler equation , 2014, 1405.7756.
[20] F. Nazarov,et al. A Simple Energy Pump for the Surface Quasi-geostrophic Equation , 2011, 1106.4591.
[21] F. Gancedo,et al. On the local existence and blow-up for generalized SQG patches , 2018, Annals of PDE.
[22] E. Hölder. Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit , 1933 .
[23] Xiaoqian Xu. Fast growth of the vorticity gradient in symmetric smooth domains for 2D incompressible ideal flow , 2014, 1411.1355.
[24] A. Majda,et al. Vorticity and incompressible flow , 2001 .
[25] D. Córdoba,et al. Infinite energy solutions of the surface quasi-geostrophic equation , 2010 .
[26] T. Elgindi,et al. Symmetries and Critical Phenomena in Fluids , 2016, Communications on Pure and Applied Mathematics.
[27] A. Kiselev,et al. Small scale creation for solutions of the incompressible two dimensional Euler equation , 2013, 1310.4799.
[28] A. B. Ferrari. On the blow-up of solutions of the 3-D Euler equations in a bounded domain , 1993 .
[29] H. Koch. Transport and instability for perfect fluids , 2002 .
[30] Tosio Kato,et al. On classical solutions of the two-dimensional non-stationary Euler equation , 1967 .
[31] Jean-Yves Chemin,et al. Perfect Incompressible Fluids , 1998 .
[32] On the well-posedness of the inviscid SQG equation , 2016, 1609.08334.
[33] R. Danchin,et al. Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .
[34] J. Gawroński. Amsterdam , 2008, Water in Times of Climate Change.
[35] F. Marchand. Existence and Regularity of Weak Solutions to the Quasi-Geostrophic Equations in the Spaces Lp or $$\dot{H}^{-1/2}$$ , 2007 .
[36] Yasunori Maekawa,et al. On the Inviscid Limit Problem of the Vorticity Equations for Viscous Incompressible Flows in the Half‐Plane , 2012 .
[37] C. Lacave,et al. The Euler Equations in Planar Domains with Corners , 2018, Archive for Rational Mechanics and Analysis.
[38] Tosio Kato,et al. Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .
[39] A. Kiselev,et al. Local Regularity for the Modified SQG Patch Equation , 2015, 1508.07611.
[40] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[41] Haim Brezis,et al. Remarks on the Euler equation , 1974 .
[42] Andrej Zlatoš. Exponential growth of the vorticity gradient for the Euler equation on the torus , 2013, 1310.6128.
[43] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[44] Diego Cordoba,et al. Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation , 1998, math/9811184.
[45] Peter Constantin,et al. Inviscid Limit for SQG in Bounded Domains , 2018, SIAM J. Math. Anal..
[46] C. Bardos,et al. Existence et unicité de la solution de l'équation d'Euler en dimension deux , 1972 .
[47] Andrea L. Bertozzi,et al. Global regularity for vortex patches , 1993 .
[48] Jean Bourgain,et al. Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces , 2013, 1307.7090.
[49] Andrew J. Majda,et al. Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .
[50] F. J. McGrath. Nonstationary plane flow of viscous and ideal fluids , 1968 .
[51] G. Burton. Sobolev Spaces , 2013 .