Global well-posedness to the two-dimensional incompressible vorticity equation in the half plane

This paper is concerned with the global well-posedness of the two-dimensional incompressible vorticity equation in the half plane. Under the assumption that the initial vorticity ω0 ∈ W (R+) with k ≥ 3 and 1 < p < 2, it is shown that the two-dimensional incompressible vorticity equation admits a unique solution ω ∈ C([0, T ];W (R+)) for any T > 0. An elementary and self-contained proof is presented and delicate estimates of the velocity and its derivatives are obtained in this paper. It should be emphasized that the uniform estimate on ∫ t 0 ‖u(τ )‖W1,∞(R2 + )dτ is required to complete the global regularity of the solution. To do that, the double exponential growth in time of the gradient of the vorticity in the half plane is established and applied. This is different from the proof of global well-posedness of the Euler velocity equations in the Sobolev spaces, in which a Kato-type or logarithmic-type estimate of the gradient of the velocity is enough to close the energy estimates.

[1]  P. Constantin,et al.  Global Weak Solutions for SQG in Bounded Domains , 2016, 1612.02489.

[2]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[3]  L. Ryzhik,et al.  Finite time singularity for the modified SQG patch equation , 2016 .

[4]  Charles Fefferman,et al.  Growth of solutions for QG and 2D Euler equations , 2001 .

[5]  A. Majda,et al.  Concentrations in regularizations for 2-D incompressible flow , 1987 .

[6]  Luis Vega,et al.  Well-posedness of the initial value problem for the Korteweg-de Vries equation , 1991 .

[7]  Tosio Kato,et al.  Liapunov functions and monotonicity in the Navier-Stokes equation , 1990 .

[8]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[9]  Si-ming He,et al.  Small-scale creation for solutions of the SQG equation , 2019, Duke Mathematical Journal.

[10]  P. Constantin,et al.  Local and global strong solutions for SQG in bounded domains , 2017, Physica D: Nonlinear Phenomena.

[11]  Javier G'omez-Serrano,et al.  Global Smooth Solutions for the Inviscid SQG Equation , 2016, 1603.03325.

[12]  Yasunori Maekawa Solution formula for the vorticity equations in the half plane with application to high vorticity creation at zero viscosity limit , 2011, Advances in Differential Equations.

[13]  Dong Li,et al.  On Kato–Ponce and fractional Leibniz , 2016, Revista Matemática Iberoamericana.

[14]  W. Wolibner Un theorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long , 1933 .

[15]  Mario Pulvirenti,et al.  Mathematical Theory of Incompressible Nonviscous Fluids , 1993 .

[16]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[17]  L. Nirenberg,et al.  On elliptic partial differential equations , 1959 .

[18]  A. Kiselev,et al.  Blow up for the 2D Euler Equation on Some Bounded Domains , 2014, 1406.3648.

[19]  V. Hoang,et al.  No Local Double Exponential Gradient Growth in Hyperbolic Flow for the Euler equation , 2014, 1405.7756.

[20]  F. Nazarov,et al.  A Simple Energy Pump for the Surface Quasi-geostrophic Equation , 2011, 1106.4591.

[21]  F. Gancedo,et al.  On the local existence and blow-up for generalized SQG patches , 2018, Annals of PDE.

[22]  E. Hölder Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit , 1933 .

[23]  Xiaoqian Xu Fast growth of the vorticity gradient in symmetric smooth domains for 2D incompressible ideal flow , 2014, 1411.1355.

[24]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[25]  D. Córdoba,et al.  Infinite energy solutions of the surface quasi-geostrophic equation , 2010 .

[26]  T. Elgindi,et al.  Symmetries and Critical Phenomena in Fluids , 2016, Communications on Pure and Applied Mathematics.

[27]  A. Kiselev,et al.  Small scale creation for solutions of the incompressible two dimensional Euler equation , 2013, 1310.4799.

[28]  A. B. Ferrari On the blow-up of solutions of the 3-D Euler equations in a bounded domain , 1993 .

[29]  H. Koch Transport and instability for perfect fluids , 2002 .

[30]  Tosio Kato,et al.  On classical solutions of the two-dimensional non-stationary Euler equation , 1967 .

[31]  Jean-Yves Chemin,et al.  Perfect Incompressible Fluids , 1998 .

[32]  On the well-posedness of the inviscid SQG equation , 2016, 1609.08334.

[33]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[34]  J. Gawroński Amsterdam , 2008, Water in Times of Climate Change.

[35]  F. Marchand Existence and Regularity of Weak Solutions to the Quasi-Geostrophic Equations in the Spaces Lp or $$\dot{H}^{-1/2}$$ , 2007 .

[36]  Yasunori Maekawa,et al.  On the Inviscid Limit Problem of the Vorticity Equations for Viscous Incompressible Flows in the Half‐Plane , 2012 .

[37]  C. Lacave,et al.  The Euler Equations in Planar Domains with Corners , 2018, Archive for Rational Mechanics and Analysis.

[38]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[39]  A. Kiselev,et al.  Local Regularity for the Modified SQG Patch Equation , 2015, 1508.07611.

[40]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[41]  Haim Brezis,et al.  Remarks on the Euler equation , 1974 .

[42]  Andrej Zlatoš Exponential growth of the vorticity gradient for the Euler equation on the torus , 2013, 1310.6128.

[43]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[44]  Diego Cordoba,et al.  Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation , 1998, math/9811184.

[45]  Peter Constantin,et al.  Inviscid Limit for SQG in Bounded Domains , 2018, SIAM J. Math. Anal..

[46]  C. Bardos,et al.  Existence et unicité de la solution de l'équation d'Euler en dimension deux , 1972 .

[47]  Andrea L. Bertozzi,et al.  Global regularity for vortex patches , 1993 .

[48]  Jean Bourgain,et al.  Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces , 2013, 1307.7090.

[49]  Andrew J. Majda,et al.  Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .

[50]  F. J. McGrath Nonstationary plane flow of viscous and ideal fluids , 1968 .

[51]  G. Burton Sobolev Spaces , 2013 .