A flux-form version of the conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid
暂无分享,去创建一个
[1] A. Priestley. A Quasi-Conservative Version of the Semi-Lagrangian Advection Scheme , 1993 .
[2] Dale R. Durran,et al. Selective monotonicity preservation in scalar advection , 2008, J. Comput. Phys..
[3] Timothy J. Barth,et al. The design and application of upwind schemes on unstructured meshes , 1989 .
[4] J. Thuburn. Multidimensional Flux-Limited Advection Schemes , 1996 .
[5] J. P. René Laprise,et al. A Class of Semi-Lagrangian Integrated-Mass (SLM) Numerical Transport Algorithms , 1995 .
[6] Miodrag Ic. Semi-Lagrangian Piecewise Biparabolic Scheme for Two-Dimensional Horizontal Advection of a Passive Scalar , 1992 .
[7] Shian-Jiann Lin,et al. Finite-volume transport on various cubed-sphere grids , 2007, J. Comput. Phys..
[8] Jean-Francois Lamarque,et al. Simulated lower stratospheric trends between 1970 and 2005: Identifying the role of climate and composition changes , 2008 .
[9] Peter H. Lauritzen,et al. Finite-Volume Methods in Meteorology , 2009 .
[10] T. Yabe,et al. Conservative and oscillation-less atmospheric transport schemes based on rational functions , 2002 .
[11] William H. Lipscomb,et al. An Incremental Remapping Transport Scheme on a Spherical Geodesic Grid , 2005 .
[12] Peter H. Lauritzen,et al. A Mass-Conservative Semi-Implicit Semi-Lagrangian Limited-Area Shallow-Water Model on the Sphere , 2006 .
[13] C. Schär,et al. A Synchronous and Iterative Flux-Correction Formalism for Coupled Transport Equations , 1996 .
[14] Harold Ritchie,et al. Numerical Methods in Atmospheric and Oceanic Modelling : the André J. Robert memorial volume , 1997 .
[15] L. Leslie,et al. Three-Dimensional Mass-Conserving Semi-Lagrangian Scheme Employing Forward Trajectories , 1995 .
[16] Nigel Wood,et al. An inherently mass‐conserving semi‐implicit semi‐Lagrangian discretisation of the shallow‐water equations on the sphere , 2009 .
[17] S. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .
[18] Nigel Wood,et al. A monotonic and positive–definite filter for a Semi‐Lagrangian Inherently Conserving and Efficient (SLICE) scheme , 2005 .
[19] Lance M. Leslie,et al. An Efficient Interpolation Procedure for High-Order Three-Dimensional Semi-Lagrangian Models , 1991 .
[20] Miodrag Rančić. An Efficient, Conservative, Monotonic Remapping for Semi-Lagrangian Transport Algorithms , 1995 .
[21] Nigel Wood,et al. SLICE: A Semi‐Lagrangian Inherently Conserving and Efficient scheme for transport problems , 2002 .
[22] R. LeVeque. High-resolution conservative algorithms for advection in incompressible flow , 1996 .
[23] C. Jablonowski,et al. Moving Vortices on the Sphere: A Test Case for Horizontal Advection Problems , 2008 .
[24] B. Machenhauer,et al. The Implementation of the Semi-Implicit Scheme in Cell-Integrated Semi-Lagrangian Models , 1997 .
[25] Paul A. Ullrich,et al. A conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed-sphere grid , 2010, J. Comput. Phys..
[26] Shian‐Jiann Lin. A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models , 2004 .
[27] Christiane Jablonowski,et al. Geometrically Exact Conservative Remapping (GECoRe): Regular Latitude–Longitude and Cubed-Sphere Grids , 2009 .
[28] D. Durran. Numerical methods for wave equations in geophysical fluid dynamics , 1999 .
[29] Ramachandran D. Nair,et al. The Mass-Conservative Cell-Integrated Semi-Lagrangian Advection Scheme on the Sphere , 2002 .
[30] F. Semazzi,et al. Efficient Conservative Global Transport Schemes for Climate and Atmospheric Chemistry Models , 2002 .
[31] W. Skamarock. Positive-Definite and Monotonic Limiters for Unrestricted-Time-Step Transport Schemes , 2006 .
[32] Andrew Staniforth,et al. Application of the parabolic spline method (PSM) to a multi-dimensional conservative semi-Lagrangian transport scheme (SLICE) , 2007, J. Comput. Phys..
[33] Peter H. Lauritzen,et al. A stability analysis of finite-volume advection schemes permitting long time steps , 2007 .
[34] Shian‐Jiann Lin,et al. Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .
[35] P. Woodward,et al. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .
[36] D. Pullin,et al. Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks , 2004 .
[37] Stephen J. Thomas,et al. A Discontinuous Galerkin Transport Scheme on the Cubed Sphere , 2005 .
[38] Peter H. Lauritzen,et al. A mass-conservative version of the semi-implicit semi-Lagrangian HIRLAM , 2008 .
[39] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[40] W. Collins,et al. Description of the NCAR Community Atmosphere Model (CAM 3.0) , 2004 .
[41] John K. Dukowicz,et al. Incremental Remapping as a Transport/Advection Algorithm , 2000 .
[42] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[43] P. Paolucci,et al. The “Cubed Sphere” , 1996 .
[44] P. Swarztrauber,et al. A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .
[45] John K. Dukowicz. Conservative rezoning (remapping) for general quadrilateral meshes , 1984 .
[46] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[47] Feng Xiao,et al. Shallow water model on cubed-sphere by multi-moment finite volume method , 2008, J. Comput. Phys..
[48] Nigel Wood,et al. Coupling a mass-conserving semi-Lagrangian scheme (SLICE) to a semi-implicit discretization of the shallow-water equations: Minimizing the dependence on a reference atmosphere , 2010 .
[49] P. Lauritzen,et al. Atmospheric Transport Schemes: Desirable Properties and a Semi-Lagrangian View on Finite-Volume Discretizations , 2011 .
[50] Peter H. Lauritzen,et al. A class of deformational flow test cases for linear transport problems on the sphere , 2010, J. Comput. Phys..