Exploiting Item Dependencies to Improve Tourist Trip Recommendations

Combining multiple points of interest (POIs) to attractive and reasonable tourist trips is a challenge in the field of Recommender Systems (RSs). Even if a user likes going to restaurants, a trip composed of too many restaurants will not be appreciated. In this position paper, we present our ideas how to improve tourist trip recommendations by focusing more on user satisfaction. We introduce the concept of item dependencies describing how POIs influence the value of other POIs in the same trip when recommending tourist trips. Besides background information and related work in the field of tourist trip recommendations, we present ideas to iteratively learn dependencies between items and to integrate them into the recommendation process.

[1]  Hoong Chuin Lau,et al.  Orienteering Problem: A survey of recent variants, solution approaches and applications , 2016, Eur. J. Oper. Res..

[2]  Lior Rokach,et al.  Recommender Systems: Introduction and Challenges , 2015, Recommender Systems Handbook.

[3]  Dirk Van Oudheusden,et al.  The City Trip Planner: An expert system for tourists , 2011, Expert Syst. Appl..

[4]  Francesco Ricci,et al.  Aplying Trip@dvice Recommendation Technology to www.visiteurope.com , 2006, ECAI.

[5]  Jürgen Dorn,et al.  A Tabu Search approach for Multi Constrained Team Orienteering Problem and its application in touristic trip planning , 2012, 2012 12th International Conference on Hybrid Intelligent Systems (HIS).

[6]  Gilbert Laporte,et al.  The orienteering problem with variable profits , 2013, Networks.

[7]  D. Gavalas,et al.  Web application for recommending personalised mobile tourist routes , 2012, IET Softw..

[8]  Bruce L. Golden,et al.  The team orienteering problem , 1996 .

[9]  Zong Woo Geem,et al.  Harmony Search for Generalized Orienteering Problem: Best Touring in China , 2005, ICNC.

[10]  Andrzej Lingas,et al.  Approximation algorithms for time-dependent orienteering , 2001, Inf. Process. Lett..

[11]  Olatz Arbelaitz,et al.  Personalized Tourist Route Generation , 2010, ICWE Workshops.

[12]  Dirk Van Oudheusden,et al.  The orienteering problem: A survey , 2011, Eur. J. Oper. Res..

[13]  Francesco Ricci,et al.  Improving Recommendation Effectiveness: Adapting a Dialogue Strategy in Online Travel Planning , 2009, J. Inf. Technol. Tour..

[14]  T. Tsiligirides,et al.  Heuristic Methods Applied to Orienteering , 1984 .

[15]  Wolfgang Wörndl,et al.  Generating Paths Through Discovered Places-of-Interests for City Trip Planning , 2016, ENTER.

[16]  Dirk Van Oudheusden,et al.  The Mobile Tourist Guide: An OR Opportunity , 2007, OR Insight.

[17]  Enrico Angelelli,et al.  The Clustered Orienteering Problem , 2014, Eur. J. Oper. Res..

[18]  J. B. Brooke,et al.  SUS: A 'Quick and Dirty' Usability Scale , 1996 .

[19]  Dirk Van Oudheusden,et al.  Iterated local search for the team orienteering problem with time windows , 2009, Comput. Oper. Res..

[20]  Nacima Labadie,et al.  Team Orienteering Problem with Decreasing Profits , 2013, Electron. Notes Discret. Math..

[21]  Charalampos Konstantopoulos,et al.  A survey on algorithmic approaches for solving tourist trip design problems , 2014, Journal of Heuristics.