Perovskite Solar Cells for BIPV Application: A Review

The rapid efficiency enhancement of perovskite solar cells (PSCs) make it a promising photovoltaic (PV) research, which has now drawn attention from industries and government organizations to invest for further development of PSC technology. PSC technology continuously develops into new and improved results. However, stability, toxicity, cost, material production and fabrication become the significant factors, which limits the expansion of PSCs. PSCs integration into a building in the form of building-integrated photovoltaic (BIPV) is one of the most holistic approaches to exploit it as a next-generation PV technology. Integration of high efficiency and semi-transparent PSC in BIPV is still not a well-established area. The purpose of this review is to get an overview of the relative scope of PSCs integration in the BIPV sector. This review demonstrates the benevolence of PSCs by stimulating energy conversion and its perspective and gradual evolution in terms of photovoltaic applications to address the challenge of increasing energy demand and their environmental impacts for BIPV adaptation. Understanding the critical impact regarding the materials and devices established portfolio for PSC integration BIPV are also discussed. In addition to highlighting the apparent advantages of using PSCs in terms of their demand, perspective and the limitations, challenges, new strategies of modification and relative scopes are also addressed in this review.

[1]  Aritra Ghosh,et al.  Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate , 2020, Renewable Energy.

[2]  Aritra Ghosh,et al.  Incorporating Solution-Processed Mesoporous WO3 as an Interfacial Cathode Buffer Layer for Photovoltaic Applications. , 2020, The journal of physical chemistry. A.

[3]  S. Sundaram,et al.  An analytical indoor experimental study on the effect of soiling on PV, focusing on dust properties and PV surface material , 2020 .

[4]  S. Sundaram,et al.  Impact of different light induced effect on organic hole-transporting layer in perovskite solar cells , 2020, Materials Letters.

[5]  Aritra Ghosh Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power , 2020, Challenges.

[6]  Aritra Ghosh,et al.  Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review , 2020, Energies.

[7]  Aritra Ghosh,et al.  Realization of Poly(methyl methacrylate)-Encapsulated Solution-Processed Carbon-Based Solar Cells: An Emerging Candidate for Buildings’ Comfort , 2020, Industrial & engineering chemistry research.

[8]  Walid R. Issa,et al.  Performance assessment of cadmium telluride-based semi-transparent glazing for power saving in façade buildings , 2020 .

[9]  Giovanni Manzini,et al.  PV modules on buildings – Outlines of PV roof samples fire rating assessment , 2020, Fire Safety Journal.

[10]  Xu Zhao,et al.  Pb-Based Perovskite Solar Cells and the Underlying Pollution behind Clean Energy: Dynamic Leaching of Toxic Substances from Discarded Perovskite Solar Cells. , 2020, The journal of physical chemistry letters.

[11]  B. Stalin,et al.  Performance enhancement of copper indium diselenide photovoltaic module using inorganic phase change material , 2020 .

[12]  Aritra Ghosh,et al.  Dust and PV Performance in Nigeria: A review , 2020 .

[13]  Aritra Ghosh,et al.  Investigation of a binary eutectic mixture of phase change material for building integrated photovoltaic (BIPV) system , 2020 .

[14]  Aritra Ghosh,et al.  Status of BIPV and BAPV System for Less Energy-Hungry Building in India—A Review , 2020, Applied Sciences.

[15]  Qi Chen,et al.  Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design , 2020, Nature Communications.

[16]  S. Tiwari,et al.  A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status , 2020 .

[17]  H. Hosono,et al.  Extraordinary Strong Band‐Edge Absorption in Distorted Chalcogenide Perovskites , 2020, Solar RRL.

[18]  Bao Zhang,et al.  Stable and High‐Efficiency Methylammonium‐Free Perovskite Solar Cells , 2020, Advanced materials.

[19]  Irene Cantone,et al.  Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold , 2020, Nature Communications.

[20]  S. Kalogirou,et al.  Status, barriers and perspectives of building integrated photovoltaic systems , 2020 .

[21]  F. Almonacid,et al.  Modelling photovoltaic soiling losses through optical characterization , 2020, Scientific Reports.

[22]  Aritra Ghosh,et al.  Hydrophilic and Superhydrophilic Self-Cleaning Coatings by Morphologically Varying ZnO Microstructures for Photovoltaic and Glazing Applications , 2020, ACS omega.

[23]  Walid R. Issa,et al.  Thermal performance of semitransparent CdTe BIPV window at temperate climate , 2020, Solar Energy.

[24]  Jae‐Kwang Kim,et al.  Recent progress on cesium lead/tin halide-based inorganic perovskites for stable and efficient solar cells: A review , 2020, Solar Energy Materials and Solar Cells.

[25]  S. Sundaram,et al.  Performance of WO3-Incorporated Carbon Electrodes for Ambient Mesoscopic Perovskite Solar Cells , 2019, ACS omega.

[26]  Aritra Ghosh,et al.  Evaluation of thermal performance for a smart switchable adaptive polymer dispersed liquid crystal (PDLC) glazing , 2020 .

[27]  Aritra Ghosh,et al.  Carbon counter electrode mesoscopic ambient processed & characterised perovskite for adaptive BIPV fenestration , 2020 .

[28]  Yuting Chen,et al.  Theoretical study of building-integrated photovoltaics based on perovskite single junction and perovskite/silicon tandem solar cells , 2020 .

[29]  S. Im,et al.  Present Status and Research Prospects of Tin‐based Perovskite Solar Cells , 2020, Solar RRL.

[30]  R. Eichel,et al.  Efficient Area Matched Converter Aided Solar Charging of Lithium Ion Batteries Using High Voltage Perovskite Solar Cells , 2020 .

[31]  M. Hillebrandt,et al.  Analysing the trade-off between transparency and efficiency in the Council of the European Union , 2020, Journal of European Public Policy.

[32]  J. Ni,et al.  Perovskite Ink with Ultra-Wide Processing Window for Efficient and Scalable Perovskite Solar Cells in Ambient Air. , 2019, ACS applied materials & interfaces.

[33]  S. Mhaisalkar,et al.  Bifacial, Color-Tunable Semitransparent Perovskite Solar Cells for Building Integrated Photovoltaics. , 2019, ACS applied materials & interfaces.

[34]  Mohammed Ataur Rahman,et al.  Efficiency of thin film photovoltaic paint: a brief review , 2019 .

[35]  N. Park Research Direction toward Scalable, Stable, and High Efficiency Perovskite Solar Cells , 2019, Advanced Energy Materials.

[36]  V. Bulović,et al.  Acetonitrile based single step slot-die compatible perovskite ink for flexible photovoltaics , 2019, RSC advances.

[37]  Aritra Ghosh,et al.  Investigation of semi-transparent dye-sensitized solar cells for fenestration integration , 2019, Renewable Energy.

[38]  Q. Tang,et al.  Inorganic perovskite solar cells: an emerging member of the photovoltaic community , 2019, Journal of Materials Chemistry A.

[39]  Aritra Ghosh,et al.  Numerical studies of thermal comfort for semi-transparent building integrated photovoltaic (BIPV)-vacuum glazing system , 2019, Solar Energy.

[40]  D. Forgacs,et al.  Industrial Opportunities and Challenges for Perovskite Photovoltaic Technology , 2019, Solar RRL.

[41]  Aritra Ghosh,et al.  Color Comfort Evaluation of Dye-Sensitized Solar Cell (DSSC) Based Building-Integrated Photovoltaic (BIPV) Glazing after 2 Years of Ambient Exposure , 2019, The Journal of Physical Chemistry C.

[42]  Jingshan Luo,et al.  Semitransparent Perovskite Solar Cells: From Materials and Devices to Applications , 2019, Advanced materials.

[43]  H. Jung,et al.  Flexible Perovskite Solar Cells , 2019, Joule.

[44]  Chang-Qi Ma,et al.  Super-flexible perovskite solar cells with high power-per-weight on 17 μm thick PET substrate utilizing printed Ag nanowires bottom and top electrodes , 2019, Flexible and Printed Electronics.

[45]  Zhipan Zhang,et al.  A photocapacitor with high working voltage and energy density , 2019, Sustainable Energy & Fuels.

[46]  Anders Hagfeldt,et al.  Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions , 2019, Nature Energy.

[47]  Ready cells for large-scale systems , 2019, Nature Energy.

[48]  Chao Li,et al.  Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors , 2019, Nano Energy.

[49]  Abbas Behjat,et al.  Progress and challenges in perovskite photovoltaics from single- to multi-junction cells , 2019, Materials Today Energy.

[50]  Jyh‐Chiang Jiang,et al.  Theoretical study on halide and mixed halide Perovskite solar cells: Effects of halide atoms on the stability and electronic properties , 2019, Journal of the Chinese Chemical Society.

[51]  Christian Breyer,et al.  Terawatt-scale photovoltaics: Transform global energy , 2019, Science.

[52]  Veronica Soebarto,et al.  A thermal comfort environmental chamber study of older and younger people , 2019, Building and Environment.

[53]  Y. Bekenstein,et al.  Advances in lead-free double perovskite nanocrystals, engineering band-gaps and enhancing stability through composition tunability. , 2019, Nanoscale.

[54]  Dong Hoe Kim,et al.  Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells , 2019, Science.

[55]  Arno Schlueter,et al.  High-resolution, parametric BIPV and electrical systems modeling and design , 2019, Applied Energy.

[56]  J. J. Flores-Prieto,et al.  Adaptive thermal comfort model for educational buildings in a hot-humid climate , 2019, Building and Environment.

[57]  Tae Joo Shin,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[58]  T. Miyasaka,et al.  Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. , 2019, Chemical reviews.

[59]  Kamal Alameh,et al.  Recent Developments in Solar Energy-Harvesting Technologies for Building Integration and Distributed Energy Generation , 2019, Energies.

[60]  Pengwan Chen,et al.  Strain engineering in perovskite solar cells and its impacts on carrier dynamics , 2019, Nature Communications.

[61]  Walid R. Issa,et al.  Evaluation of solar factor using spectral analysis for CdTe photovoltaic glazing , 2019, Materials Letters.

[62]  P. Hancock,et al.  Effects of moderate thermal environments on cognitive performance: A multidisciplinary review , 2019, Applied Energy.

[63]  Rui Wang,et al.  A Review of Perovskites Solar Cell Stability , 2019, Advanced Functional Materials.

[64]  T. Aernouts Efficient Structures and Processes for Reliable Perovskite Solar Modules , 2019, Proceedings of the 11th International Conference on Hybrid and Organic Photovoltaics.

[65]  Aritra Ghosh,et al.  Colour properties and glazing factors evaluation of multicrystalline based semi-transparent Photovoltaic-vacuum glazing for BIPV application , 2019, Renewable Energy.

[66]  Brian Norton,et al.  Optimization of PV powered SPD switchable glazing to minimise probability of loss of power supply , 2019, Renewable Energy.

[67]  A. Díez-Pascual,et al.  Materials for Photovoltaics: State of Art and Recent Developments , 2019, International journal of molecular sciences.

[68]  Mingkui Wang,et al.  Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications? , 2019, Nanoscale advances.

[69]  Hyunhyub Ko,et al.  Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance , 2019, Journal of Materials Chemistry A.

[70]  D. Shin,et al.  Recent advancements in and perspectives on flexible hybrid perovskite solar cells , 2019, Journal of Materials Chemistry A.

[71]  Tsutomu Miyasaka A decade of perovskite photovoltaics , 2019, Nature Energy.

[72]  Francesco Martellotta,et al.  Smart perovskite-based technologies for building integration:: a cross-disciplinary approach , 2019 .

[73]  G. Gigli,et al.  Polymeric rheology modifier allows single-step coating of perovskite ink for highly efficient and stable solar cells , 2018, Nano Energy.

[74]  Xing’ao Li,et al.  Enhanced hole transfer in hole-conductor-free perovskite solar cells via incorporating CuS into carbon electrodes , 2018, Applied Surface Science.

[75]  Yang Yang,et al.  Addressing the stability issue of perovskite solar cells for commercial applications , 2018, Nature Communications.

[76]  L. Etgar,et al.  Hot dipping post treatment for improved efficiency in micro patterned semi-transparent perovskite solar cells , 2018 .

[77]  David Feldman,et al.  Increasing markets and decreasing package weight for high-specific-power photovoltaics , 2018, Nature Energy.

[78]  Anders Hagfeldt,et al.  Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture , 2018, Science.

[79]  Peng Huang,et al.  Semi-transparent perovskite solar cells: unveiling the trade-off between transparency and efficiency , 2018 .

[80]  Jooho Moon,et al.  Recent advances in high-performance semitransparent perovskite solar cells , 2018, Current Opinion in Electrochemistry.

[81]  Aritra Ghosh,et al.  Investigation of thermal and electrical performances of a combined semi-transparent PV-vacuum glazing , 2018, Applied Energy.

[82]  Suhaidi Shafie,et al.  A review of transparent solar photovoltaic technologies , 2018, Renewable and Sustainable Energy Reviews.

[83]  Brian Norton,et al.  Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings , 2018, Renewable Energy.

[84]  L. Qiu,et al.  Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules , 2018, Nature Communications.

[85]  Edward H. Sargent,et al.  Challenges for commercializing perovskite solar cells , 2018, Science.

[86]  Dong Hee Shin,et al.  Recent Studies of Semitransparent Solar Cells , 2018, Coatings.

[87]  M. Quevedo-López,et al.  Enhanced reproducibility of planar perovskite solar cells by fullerene doping with silver nanoparticles , 2018, Journal of Applied Physics.

[88]  Tapas K. Mallick,et al.  Influence of atmospheric clearness on PDLC switchable glazing transmission , 2018, Energy and Buildings.

[89]  J. Lian,et al.  Electron-Transport Materials in Perovskite Solar Cells , 2018, Small Methods.

[90]  N. Park,et al.  Research Direction toward Theoretical Efficiency in Perovskite Solar Cells , 2018, ACS Photonics.

[91]  Wilfried G.J.H.M. van Sark,et al.  A comparative review of building integrated photovoltaics ecosystems in selected European countries , 2018, Renewable and Sustainable Energy Reviews.

[92]  Nam-Gyu Park,et al.  Perovskite Solar Cells with Inorganic Electron‐ and Hole‐Transport Layers Exhibiting Long‐Term (≈500 h) Stability at 85 °C under Continuous 1 Sun Illumination in Ambient Air , 2018, Advanced materials.

[93]  Jiantie Xu,et al.  Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering. , 2018, Chemical Society reviews.

[94]  Nallapaneni Manoj Kumar,et al.  Solar irradiance forecasting and energy optimization for achieving nearly net zero energy building , 2018 .

[95]  M. Nazeeruddin,et al.  Frontiers, opportunities, and challenges in perovskite solar cells: A critical review , 2018, Journal of Photochemistry and Photobiology C: Photochemistry Reviews.

[96]  Tomas Matuska,et al.  Influence of increased temperature on energy production of roof integrated PV panels , 2018 .

[97]  Tapas K. Mallick,et al.  Evaluation of colour properties due to switching behaviour of a PDLC glazing for adaptive building integration , 2018 .

[98]  Qiaoling Xu,et al.  Perovskite Solar Absorbers: Materials by Design , 2018 .

[99]  S. Stranks,et al.  The influence of the Rashba effect , 2018, Nature Materials.

[100]  Henry J Snaith,et al.  Present status and future prospects of perovskite photovoltaics , 2018, Nature Materials.

[101]  Yongfang Li,et al.  A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency , 2018, Advanced materials.

[102]  Camila P. Ferraz,et al.  The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. , 2018, Dalton transactions.

[103]  N. Park,et al.  Methodologies toward Highly Efficient Perovskite Solar Cells. , 2018, Small.

[104]  Yong Yan,et al.  Enhanced performance of perovskite solar cells by ultraviolet-ozone treatment of mesoporous TiO2 , 2018 .

[105]  Wenxi Guo,et al.  Highly flexible and scalable photo-rechargeable power unit based on symmetrical nanotube arrays , 2018 .

[106]  Jiajun Gu,et al.  Cesium Titanium(IV) Bromide Thin Films Based Stable Lead-free Perovskite Solar Cells , 2018 .

[107]  Aritra Ghosh,et al.  The colour rendering index and correlated colour temperature of dye-sensitized solar cell for adaptive glazing application , 2018 .

[108]  Aritra Ghosh,et al.  Evaluation of optical properties and protection factors of a PDLC switchable glazing for low energy building integration , 2018 .

[109]  Yiwang Chen,et al.  Recent Progress on the Long‐Term Stability of Perovskite Solar Cells , 2018, Advanced science.

[110]  Xudong Xiao,et al.  Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity , 2018 .

[111]  Michael De Volder,et al.  Photo-Rechargeable Organo-Halide Perovskite Batteries. , 2018, Nano letters.

[112]  M. Loi,et al.  Highly Reproducible Sn‐Based Hybrid Perovskite Solar Cells with 9% Efficiency , 2018 .

[113]  Richard R. Lunt,et al.  Publisher Correction: Emergence of highly transparent photovoltaics for distributed applications , 2018 .

[114]  A. Jen,et al.  Realizing Efficient Lead‐Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route , 2018, Advanced materials.

[115]  A. Priyadarshi,et al.  Spinel Co3O4 nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells. , 2018, Nanoscale.

[116]  Jun Du,et al.  Solar Paint from TiO2 Particles Supported Quantum Dots for Photoanodes in Quantum Dot–Sensitized Solar Cells , 2018, ACS omega.

[117]  David T. Limmer,et al.  Thermochromic halide perovskite solar cells , 2018, Nature Materials.

[118]  C. Ballif,et al.  Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices. , 2018, The journal of physical chemistry letters.

[119]  J. Im,et al.  Mixed Sulfur and Iodide-Based Lead-Free Perovskite Solar Cells. , 2018, Journal of the American Chemical Society.

[120]  Easwaramoorthi Ramasamy,et al.  Flexible Perovskite Solar Cells , 2018 .

[121]  T. Hayat,et al.  The influence of perovskite layer and hole transport material on the temperature stability about perovskite solar cells , 2018 .

[122]  Brian Norton,et al.  Daylight characteristics of a polymer dispersed liquid crystal switchable glazing , 2018 .

[123]  Christoph J. Brabec,et al.  A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells , 2017, Science.

[124]  L. Wheeler,et al.  Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide , 2017, Nature Communications.

[125]  Neha Arora,et al.  Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% , 2017, Science.

[126]  Francesco Martellotta,et al.  Improving energy and visual performance in offices using building integrated perovskite-based solar cells: A case study in Southern Italy , 2017 .

[127]  Yanfa Yan,et al.  Progress in Theoretical Study of Metal Halide Perovskite Solar Cell Materials , 2017 .

[128]  P. Malbranche,et al.  Thermal analysis of a BIPV system by various modelling approaches , 2017 .

[129]  Sang Jin Park,et al.  Incident-angle-controlled semitransparent colored perovskite solar cells with improved efficiency exploiting a multilayer dielectric mirror. , 2017, Nanoscale.

[130]  T. Bein,et al.  Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications , 2017 .

[131]  A. Wakamiya,et al.  Minute-Scale Degradation and Shift of Valence-Band Maxima of (CH3NH3)SnI3 and HC(NH2)2SnI3 Perovskites upon Air Exposure , 2017 .

[132]  X. Xia,et al.  High-Quality (CH3NH3)3Bi2I9 Film-Based Solar Cells: Pushing Efficiency up to 1.64. , 2017, The journal of physical chemistry letters.

[133]  Francesco Martellotta,et al.  Comparing energy performance of different semi-transparent, building-integrated photovoltaic cells applied to "reference" buildings , 2017 .

[134]  Francesco Martellotta,et al.  Energetic and visual comfort implications of using perovskite-based building-integrated photovoltaic glazings , 2017 .

[135]  A. Grimsdale,et al.  Hole transporting materials for mesoscopic perovskite solar cells – towards a rational design? , 2017 .

[136]  V. Sundström,et al.  Ultrafast Electron Dynamics in Solar Energy Conversion. , 2017, Chemical reviews.

[137]  K. Catchpole,et al.  Rubidium Multication Perovskite with Optimized Bandgap for Perovskite‐Silicon Tandem with over 26% Efficiency , 2017 .

[138]  R. Heiderhoff,et al.  Self‐Encapsulating Thermostable and Air‐Resilient Semitransparent Perovskite Solar Cells , 2017 .

[139]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[140]  Ilke Celik,et al.  A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques , 2017 .

[141]  Shengsheng He,et al.  A Short Progress Report on High-Efficiency Perovskite Solar Cells , 2017, Nanoscale Research Letters.

[142]  C. Brabec,et al.  Printed semi-transparent large area organic photovoltaic modules with power conversion efficiencies of close to 5 % , 2017 .

[143]  Ke Chen,et al.  Highly Efficient Perovskite Solar Cell Photocharging of Lithium Ion Battery Using DC–DC Booster , 2017 .

[144]  Shihe Yang,et al.  Carbon‐Based Perovskite Solar Cells without Hole Transport Materials: The Front Runner to the Market? , 2017, Advanced materials.

[145]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[146]  Jiangyu Li,et al.  Nanotube enhanced carbon grids as top electrodes for fully printable mesoscopic semitransparent perovskite solar cells , 2017 .

[147]  Francesco Fiorito,et al.  Building integration of semitransparent perovskite-based solar cells: Energy performance and visual comfort assessment , 2017 .

[148]  J. L. Delgado,et al.  Carbon Nanoforms in Perovskite‐Based Solar Cells , 2017 .

[149]  U. Buttner,et al.  Thermochromic Perovskite Inks for Reversible Smart Window Applications , 2017 .

[150]  Brian Norton,et al.  Durability of switching behaviour after outdoor exposure for a suspended particle device switchable glazing , 2017 .

[151]  Brian Norton,et al.  Interior colour rendering of daylight transmitted through a suspended particle device switchable glazing , 2017 .

[152]  Alex K.-Y. Jen,et al.  Toward All Room‐Temperature, Solution‐Processed, High‐Performance Planar Perovskite Solar Cells: A New Scheme of Pyridine‐Promoted Perovskite Formation , 2017, Advanced materials.

[153]  Aram Amassian,et al.  Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[154]  K. Cao,et al.  Full printable perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO (carbon nanotubes) architecture , 2017 .

[155]  Brian Norton,et al.  Effect of atmospheric transmittance on performance of adaptive SPD-vacuum switchable glazing , 2017, Solar Energy Materials and Solar Cells.

[156]  Jinsong Huang,et al.  Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films , 2017 .

[157]  J. Sun,et al.  Semi-transparent solar cells , 2017 .

[158]  Yue Hu,et al.  Stable Large‐Area (10 × 10 cm2) Printable Mesoscopic Perovskite Module Exceeding 10% Efficiency , 2017 .

[159]  Brian Norton,et al.  Effect of sky conditions on light transmission through a suspended particle device switchable glazing , 2017 .

[160]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[161]  Bin Fan,et al.  Large area perovskite solar cell module , 2017 .

[162]  A. Tiwari,et al.  High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration , 2016, Nature Energy.

[163]  J. Chen,et al.  Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives. , 2016, ChemSusChem.

[164]  Kyungjin Cho,et al.  UV Degradation and Recovery of Perovskite Solar Cells , 2016, Scientific Reports.

[165]  Brian Norton,et al.  First outdoor characterisation of a PV powered suspended particle device switchable glazing , 2016, Solar Energy Materials and Solar Cells.

[166]  B. Kippelen,et al.  Efficient Colorful Perovskite Solar Cells Using a Top Polymer Electrode Simultaneously as Spectrally Selective Antireflection Coating. , 2016, Nano letters.

[167]  Jinsong Huang,et al.  Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? , 2016 .

[168]  Yu-Ju Chuang,et al.  Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Quantum Rods with High-Performance Solar Cell Application. , 2016, The journal of physical chemistry letters.

[169]  Chao Li,et al.  Wearable energy-smart ribbons for synchronous energy harvest and storage , 2016, Nature Communications.

[170]  Myung-Lae Lee,et al.  Efficiency enhancement of semi-transparent sandwich type CH3NH3PbI3 perovskite solar cells with island morphology perovskite film by introduction of polystyrene passivation layer , 2016 .

[171]  Brian Norton,et al.  Behaviour of a SPD switchable glazing in an outdoor test cell with heat removal under varying weather conditions , 2016 .

[172]  Anders Hagfeldt,et al.  Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide , 2016 .

[173]  Tilmann E. Kuhn,et al.  Electricity yield simulation for the building-integrated photovoltaic system installed in the main building roof of the Fraunhofer Institute for Solar Energy Systems ISE , 2016 .

[174]  Sunho Jeong,et al.  Parallelized Nanopillar Perovskites for Semitransparent Solar Cells Using an Anodized Aluminum Oxide Scaffold , 2016 .

[175]  N. Park,et al.  Material and Device Stability in Perovskite Solar Cells. , 2016, ChemSusChem.

[176]  A. Carlo,et al.  Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology , 2016 .

[177]  Brian Norton,et al.  Measured thermal & daylight performance of an evacuated glazing using an outdoor test cell , 2016 .

[178]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[179]  Paul Heremans,et al.  Nonhazardous Solvent Systems for Processing Perovskite Photovoltaics , 2016 .

[180]  Brian Norton,et al.  Daylighting performance and glare calculation of a suspended particle device switchable glazing , 2016 .

[181]  N. Park,et al.  Empowering Semi‐Transparent Solar Cells with Thermal‐Mirror Functionality , 2016 .

[182]  S. Zakeeruddin,et al.  A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells , 2016, Science.

[183]  Jinsong Huang,et al.  Air‐Stable, Efficient Mixed‐Cation Perovskite Solar Cells with Cu Electrode by Scalable Fabrication of Active Layer , 2016 .

[184]  Jae Ho Yun,et al.  Comprehensive review on material requirements, present status, and future prospects for building-integrated semitransparent photovoltaics (BISTPV) , 2016 .

[185]  Yang Yang Li,et al.  Perovskite Photovoltachromic Supercapacitor with All-Transparent Electrodes. , 2016, ACS nano.

[186]  Konrad Wojciechowski,et al.  Shunt‐Blocking Layers for Semitransparent Perovskite Solar Cells , 2016 .

[187]  S. Mhaisalkar,et al.  Nanostructuring Mixed‐Dimensional Perovskites: A Route Toward Tunable, Efficient Photovoltaics , 2016, Advanced materials.

[188]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[189]  E. Alarousu,et al.  Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. , 2016, Nanoscale.

[190]  Shijing Sun,et al.  The synthesis, structure and electronic properties of a lead-free hybrid inorganic–organic double perovskite (MA)2KBiCl6 (MA = methylammonium) , 2016, 1603.00537.

[191]  Yunlong Guo,et al.  Polymer Stabilization of Lead(II) Perovskite Cubic Nanocrystals for Semitransparent Solar Cells , 2016 .

[192]  Long Ye,et al.  Green‐Solvent‐Processed All‐Polymer Solar Cells Containing a Perylene Diimide‐Based Acceptor with an Efficiency over 6.5% , 2016 .

[193]  Aslihan Babayigit,et al.  Toxicity of organometal halide perovskite solar cells. , 2016, Nature materials.

[194]  Chih‐Ping Chen,et al.  High-Performance, Semitransparent, Easily Tunable Vivid Colorful Perovskite Photovoltaics Featuring Ag/ITO/Ag Microcavity Structures , 2016 .

[195]  Aslihan Babayigit,et al.  Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio , 2016, Scientific Reports.

[196]  Yang Yang,et al.  High-efficiency robust perovskite solar cells on ultrathin flexible substrates , 2016, Nature Communications.

[197]  Rebecca J. Yang,et al.  Building integrated photovoltaics (BIPV): costs, benefits, risks, barriers and improvement strategy , 2016 .

[198]  Mohammad Khaja Nazeeruddin,et al.  Organohalide Lead Perovskites for Photovoltaic Applications. , 2016, The journal of physical chemistry letters.

[199]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[200]  Bjørn Petter Jelle Building Integrated Photovoltaics: A Concise Description of the Current State of the Art and Possible Research Pathways , 2015 .

[201]  Yu Cheng,et al.  Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications , 2015, Scientific Reports.

[202]  Giovanni Manzini,et al.  The Fire Risk in Photovoltaic Installations - Test Protocols For Fire Behavior of PV Modules , 2015 .

[203]  Brian Norton,et al.  Measured overall heat transfer coefficient of a suspended particle device switchable glazing , 2015 .

[204]  A. Tiwari,et al.  Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications , 2015, Nature Communications.

[205]  Bert Conings,et al.  An electron beam evaporated TiO2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates , 2015 .

[206]  Berit Time,et al.  Roof-integrated PV in Nordic climate - Building physical challenges , 2015 .

[207]  Kai Zhu,et al.  Square‐Centimeter Solution‐Processed Planar CH3NH3PbI3 Perovskite Solar Cells with Efficiency Exceeding 15% , 2015, Advanced materials.

[208]  Min Ho Lee,et al.  Stable semi-transparent CH3NH3PbI3 planar sandwich solar cells , 2015 .

[209]  Yaoguang Rong,et al.  Beyond Efficiency: the Challenge of Stability in Mesoscopic Perovskite Solar Cells , 2015 .

[210]  Reinhard Schwödiauer,et al.  Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. , 2015, Nature Materials.

[211]  V. Ahmadi,et al.  New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells. , 2015, ACS applied materials & interfaces.

[212]  M. Kanatzidis,et al.  The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors. , 2015, Accounts of chemical research.

[213]  A. Jen,et al.  High‐Performance Semitransparent Perovskite Solar Cells with 10% Power Conversion Efficiency and 25% Average Visible Transmittance Based on Transparent CuSCN as the Hole‐Transporting Material , 2015 .

[214]  Shenghao Wang,et al.  Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes , 2015 .

[215]  Liming Dai,et al.  Efficiently photo-charging lithium-ion battery by perovskite solar cell , 2015, Nature Communications.

[216]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[217]  Aldo Di Carlo,et al.  Vertical TiO2 Nanorods as a Medium for Stable and High-Efficiency Perovskite Solar Modules. , 2015, ACS nano.

[218]  G. Han,et al.  Investigation of perovskite-sensitized nanoporous titanium dioxide photoanodes with different thicknesses in perovskite solar cells , 2015 .

[219]  Thomas Rath,et al.  The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. , 2015, Angewandte Chemie.

[220]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[221]  Omar K Farha,et al.  2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. , 2015, Journal of the American Chemical Society.

[222]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[223]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[224]  Su-Huai Wei,et al.  Halide perovskite materials for solar cells: a theoretical review , 2015 .

[225]  David Cahen,et al.  Rain on Methylammonium Lead Iodide Based Perovskites: Possible Environmental Effects of Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[226]  Leone Spiccia,et al.  Ultra-thin high efficiency semitransparent perovskite solar cells , 2015 .

[227]  Meng Zhang,et al.  Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. , 2015, Nano letters.

[228]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[229]  Rebecca J. Yang,et al.  Overcoming technical barriers and risks in the application of building integrated photovoltaics (BIPV): hardware and software strategies , 2015 .

[230]  H. Rensmo,et al.  Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures—A Photoelectron Spectroscopy Investigation , 2015 .

[231]  M. Johnston,et al.  Highly Efficient Perovskite Solar Cells with Tunable Structural Color , 2015, Nano letters.

[232]  Michael Graetzel,et al.  A power pack based on organometallic perovskite solar cell and supercapacitor. , 2015, ACS nano.

[233]  Jeffrey A. Christians,et al.  Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. , 2015, Journal of the American Chemical Society.

[234]  Shengbai Zhang,et al.  Chalcogenide perovskites for photovoltaics. , 2015, Nano letters.

[235]  Aron Walsh,et al.  Ferroelectric materials for solar energy conversion: photoferroics revisited , 2014, 1412.6929.

[236]  Timothy L. Kelly,et al.  Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells , 2014 .

[237]  Nripan Mathews,et al.  Lead‐Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation , 2014, Advanced materials.

[238]  Luis Camacho,et al.  High efficiency single-junction semitransparent perovskite solar cells , 2014 .

[239]  T. Minemoto,et al.  Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells , 2014 .

[240]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[241]  Adel S. Al-Jimaz,et al.  Effect of temperature and chain length on the viscosity and surface tension of binary systems of N,N-dimethylformamide with 1-octanol, 1-nonanol and 1-decanol , 2014 .

[242]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[243]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[244]  P. Umari,et al.  Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. , 2014, Nano letters.

[245]  Yun‐Hi Kim,et al.  A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite , 2014 .

[246]  H. Snaith,et al.  The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells. , 2014, The journal of physical chemistry letters.

[247]  A. Goriely,et al.  Controlling coverage of solution cast materials with unfavourable surface interactions , 2014 .

[248]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[249]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[250]  Alain Goriely,et al.  Neutral color semitransparent microstructured perovskite solar cells. , 2014, ACS nano.

[251]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[252]  Aritra Ghosh,et al.  Conceptualization of a Photovoltaic Powered Electrochromic Switching of a Multifunctional Glazing , 2014 .

[253]  Brian Norton,et al.  Multifunctional Glazing System- Solution for Modern Smart Glazing , 2014 .

[254]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[255]  Gang Li,et al.  25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research , 2013, Advanced materials.

[256]  Yaoguang Rong,et al.  Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode , 2013, Scientific Reports.

[257]  T. Dittrich,et al.  Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate heating of CH3NH3PbI3 layers , 2013 .

[258]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[259]  Christophe Ballif,et al.  Building Integrated Photovoltaics (BIPV): Review, Potentials, Barriers and Myths , 2013 .

[260]  Eike Musall,et al.  Zero Energy Building A review of definitions and calculation methodologies , 2011 .

[261]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[262]  Giyoong Tae,et al.  Efficient Polymer Solar Cells Fabricated by Simple Brush Painting , 2007 .

[263]  P. Tontiwachwuthikul,et al.  Volumetric Properties and Viscosities for Aqueous N-Methyl-2-pyrrolidone Solutions from 25 °C to 70 °C , 2004 .

[264]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.