Copula Models of Correlation: A DRAM Case Study

Variable bit retention time observed in a 65-nm dynamic random access memory (DRAM) case study will cause miscorrelation between retention times occurring in Test and Use. Conventional multivariate normal statistics cannot adequately model this miscorrelation. A more general copula-based modeling approach, widely used in financial and actuarial modeling, solves this problem. The DRAM case study shows by example how to use copula models in test applications. The method includes acquiring data using a test vehicle, fitting the data to a copula-based statistical model, and then using the model to compute producer- and customer-oriented figures of merit of a product, different from the test vehicle. Different array sizes, fault tolerance schemes, test coverage, end-use (datasheet), and test condition specifications of the product are modeled.

[1]  C. H. Stapper,et al.  Yield Model for Productivity Optimization of VLSI Memory Chips with Redundancy and Partially Good Product , 1980, IBM J. Res. Dev..

[2]  D. Oakes,et al.  On the preservation of copula structure under truncation , 2005 .

[3]  Hyungcheol Shin,et al.  Characterization of the Variable Retention Time in Dynamic Random Access Memory , 2011, IEEE Transactions on Electron Devices.

[4]  C. Stapper Correlation analysis of particle clusters on integrated circuit wafers , 1987 .

[5]  P. Embrechts,et al.  Correlation: Pitfalls and Alternatives , 1999 .

[6]  Changsong Deng,et al.  Statistics and Probability Letters , 2011 .

[7]  Alan Genz,et al.  Numerical computation of rectangular bivariate and trivariate normal and t probabilities , 2004, Stat. Comput..

[8]  Charles H. Stapper,et al.  Large-Area Fault Clusters and Fault Tolerance in VLSI Circuits: A Review , 1989, IBM J. Res. Dev..

[9]  Pravin K. Trivedi,et al.  Copula Modeling: An Introduction for Practitioners , 2007 .

[10]  Y.I. Kim,et al.  Thermal degradation of DRAM retention time: Characterization and improving techniques , 2004, 2004 IEEE International Reliability Physics Symposium. Proceedings.

[11]  J. W. Park,et al.  DRAM variable retention time , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[12]  D. Yaney,et al.  A meta-stable leakage phenomenon in DRAM charge storage —Variable hold time , 1987, 1987 International Electron Devices Meeting.

[13]  K. Takeuchi,et al.  Direct observation of RTN-induced SRAM failure by accelerated testing and its application to product reliability assessment , 2010, 2010 Symposium on VLSI Technology.

[14]  Y. Mori,et al.  The origin of variable retention time in DRAM , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[15]  Kenichi Takeda,et al.  Mechanism of random telegraph noise in junction leakage current of metal-oxide-semiconductor field-effect transistor , 2012 .

[16]  Fabio Spizzichino,et al.  On the relationships between copulas of order statistics and marginal distributions , 2010 .

[17]  M. Kendall,et al.  Rank Correlation Methods (5th ed.). , 1992 .

[18]  Hyungcheol Shin,et al.  RTS-like fluctuation in Gate Induced Drain Leakage current of Saddle-Fin type DRAM cell transistor , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[19]  K. Ohyu,et al.  Single silicon vacancy-oxygen complex defect and variable retention time phenomenon in dynamic random access memories , 2006 .

[20]  Jin Qin,et al.  A study of scaling effects on DRAM reliability , 2011, 2011 Proceedings - Annual Reliability and Maintainability Symposium.

[21]  J. T. Campbell,et al.  The Poisson Correlation Function , 1934 .

[22]  U. Lieneweg,et al.  Assesment of DRAM Reliability from Retention Time Measurements , 1998 .

[23]  N. L. Johnson,et al.  Discrete Multivariate Distributions , 1998 .

[24]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[25]  J. Jopling,et al.  Erratic fluctuations of sram cache vmin at the 90nm process technology node , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[26]  K. Ohyu,et al.  Quantitative identification for the physical origin of variable retention time: A vacancy-oxygen complex defect model , 2006, 2006 International Electron Devices Meeting.

[27]  R. Forthofer,et al.  Rank Correlation Methods , 1981 .

[28]  B. Efron,et al.  A Leisurely Look at the Bootstrap, the Jackknife, and , 1983 .