Predictive QoS routing to mobile sinks in wireless sensor networks

We present an algorithm for data delivery to mobile sinks in wireless sensor networks. Our algorithm is based on information potentials, which we extend to account for mobility. We show that for local movement along edges in the communication graph, the information potentials can be adapted using a simple iterative distributed computation. However, for non-local movement, the potential field might change significantly, and iterative computation leads to packet loss and packet delivery delays. We address this problem by introducing the mobility graph, which encodes knowledge about likely mobility patterns within the network. The mobility graph can be extracted from training data and is used to predict future relay nodes for the mobile node. Using the mobility graph, we can precompute and efficiently store additional routing states in the network. This enables the algorithm to maintain uninterrupted data streams. We analyze the benefits of computing and maintaining a mobility graph, and show that the information contained therein can be used to improve routing reliability in experiments involving mobile sinks.

[1]  Roberto Tamassia,et al.  Efficient Localization for Wireless Sensor Networks Using Power Measurements Sampling , 2007 .

[2]  Charles E. Perkins,et al.  Ad hoc On-Demand Distance Vector (AODV) Routing , 2001, RFC.

[3]  David E. Culler,et al.  Elapsed time on arrival: a simple and versatile primitive for canonical time synchronisation services , 2006, Int. J. Ad Hoc Ubiquitous Comput..

[4]  David E. Culler,et al.  Taming the underlying challenges of reliable multihop routing in sensor networks , 2003, SenSys '03.

[5]  Murat Demirbas,et al.  Trail: A Distance Sensitive WSN Service for Distributed Object Tracking , 2007, EWSN.

[6]  David Kotz,et al.  Analysis of a Campus-Wide Wireless Network , 2002, MobiCom '02.

[7]  Thierry Fraichard,et al.  Motion prediction for moving objects: a statistical approach , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[8]  Wolfram Burgard,et al.  Learning Motion Patterns of People for Compliant Robot Motion , 2005, Int. J. Robotics Res..

[9]  Leonidas J. Guibas,et al.  Composable Information Gradients in Wireless Sensor Networks , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[10]  Murat Demirbas,et al.  Data Salmon: A Greedy Mobile Basestation Protocol for Efficient Data Collection in Wireless Sensor Networks , 2007, DCOSS.

[11]  Philip Levis,et al.  Collection tree protocol , 2009, SenSys '09.

[12]  Philippe Jacquet,et al.  Optimized Link State Routing Protocol (OLSR) , 2003, RFC.

[13]  John Krumm,et al.  Route Prediction from Trip Observations , 2008 .

[14]  Gaetano Borriello,et al.  Exploiting Mobility for Energy Efficient Data Collection in Wireless Sensor Networks , 2006, Mob. Networks Appl..

[15]  Martin Klepal,et al.  Influence of Predicted and Measured Fingerprint on the Accuracy of RSSI-based Indoor Location Systems , 2007, 2007 4th Workshop on Positioning, Navigation and Communication.

[16]  David E. Culler,et al.  Software design patterns for TinyOS , 2007, TECS.

[17]  Steven G. Krantz,et al.  Handbook of Complex Variables , 1999 .

[18]  Gerald Q. Maguire,et al.  A class of mobile motion prediction algorithms for wireless mobile computing and communications , 1996, Mob. Networks Appl..

[19]  R. Wattenhofer,et al.  Dozer: Ultra-Low Power Data Gathering in Sensor Networks , 2007, 2007 6th International Symposium on Information Processing in Sensor Networks.

[20]  Ravi Jain,et al.  Evaluating Next-Cell Predictors with Extensive Wi-Fi Mobility Data , 2006, IEEE Transactions on Mobile Computing.

[21]  Lili Qiu,et al.  S4: Small State and Small Stretch Routing Protocol for Large Wireless Sensor Networks , 2007, NSDI.

[22]  Gregory A. Hansen,et al.  The Optimized Link State Routing Protocol , 2003 .

[23]  Lenore Cowen,et al.  Compact routing with minimum stretch , 1999, SODA '99.

[24]  Joseph B. Kruskall,et al.  The Symmetric Time-Warping Problem : From Continuous to Discrete , 1983 .

[25]  Danny Dolev,et al.  LLS: a locality aware location service for mobile ad hoc networks , 2004, DIALM-POMC '04.

[26]  Baruch Awerbuch,et al.  Online tracking of mobile users , 1995, JACM.

[27]  Fang Feng,et al.  Explicit proactive handoff with motion prediction for mobile IP , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[28]  Charles E. Perkins,et al.  Highly dynamic Destination-Sequenced Distance-Vector routing (DSDV) for mobile computers , 1994, SIGCOMM.

[29]  Doo Seop Eom,et al.  Distributed Dynamic Shared Tree for Minimum Energy Data Aggregation of Multiple Mobile Sinks in Wireless Sensor Networks , 2006, EWSN.

[30]  Murat Demirbas,et al.  Glance: A lightweight querying service for wireless sensor networks , 2006, Theor. Comput. Sci..

[31]  Leonidas J. Guibas,et al.  Distance-Sensitive Information Brokerage in Sensor Networks , 2006, DCOSS.

[32]  Sajal K. Das,et al.  LeZi-Update: An Information-Theoretic Framework for Personal Mobility Tracking in PCS Networks , 2002, Wirel. Networks.

[33]  Mani B. Srivastava,et al.  Multiple Controlled Mobile Elements (Data Mules) for Data Collection in Sensor Networks , 2005, DCOSS.

[34]  Wei Wang,et al.  Using mobile relays to prolong the lifetime of wireless sensor networks , 2005, MobiCom '05.

[35]  Nancy A. Lynch,et al.  A Hierarchy-Based Fault-Local Stabilizing Algorithm for Tracking in Sensor Networks , 2004, OPODIS.