Morrey–Campanato Estimates for Helmholtz Equations
暂无分享,去创建一个
[1] P. Markowich,et al. Homogenization limits and Wigner transforms , 1997 .
[2] Jean-David Benamou,et al. High frequency limit of the Helmholtz equations. , 2002 .
[3] C. Bardos,et al. Scattering frequencies and Gervey 3 singularities , 1987 .
[4] Lemmes de moments, de moyenne et de dispersion , 1992 .
[5] Barry Simon,et al. Analysis of Operators , 1978 .
[6] H. Brezis,et al. Quantization effects for −Δu = u(1 − |u|2) in ℝ2 , 1994 .
[7] Luis Vega,et al. Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations , 1998 .
[8] Shmuel Agmon,et al. Asymptotic properties of solutions of differential equations with simple characteristics , 1976 .
[9] T. Colin. Smoothing effects for dispersive equations via a generalized Wigner transform , 1994 .
[10] L. Vega,et al. Weighted Estimates for the Helmholtz Equation and Some Applications , 1997 .
[11] Cathleen S. Morawetz,et al. Time decay for the nonlinear Klein-Gordon equation , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[12] Luis Vega,et al. Small solutions to nonlinear Schrödinger equations , 1993 .
[13] Ingenuin Gasser,et al. Dispersion and Moment Lemmas Revisited , 1999 .
[14] T. Paul,et al. Sur les mesures de Wigner , 1993 .
[15] B. Zhang,et al. Radiation condition and limiting amplitude principle for acoustic propagators with two unbounded media , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[16] W. Strauss,et al. Decay and scattering of solutions of a nonlinear Schrödinger equation , 1978 .