Simulation optimization using tabu search

Investigation of the performance and operation of complex systems in manufacturing or other environments, analytical models of these systems become very complicated. Because of the complex stochastic characteristic of the systems, simulation is used as a tool to analyze them. The trust of such simulation analysis usually is to determine the optimum combination of factors that effect the considered system performance. The purpose of this study is to use a tabu search algorithm in conjunction with a simulation model of a JIT system to find the optimum number of kanbans.

[1]  Li Lin,et al.  Estimating simulation metamodel parameters for unexpected shop floor real time events , 1990 .

[2]  John A. Muckstadt,et al.  A comparison of alternative kanban control mechanisms. I. Background and structural results , 1995 .

[3]  Hsu-Pin Wang,et al.  Optimum number of kanbans between two adjacent workstations in a JIT system , 1991 .

[4]  R. D. Hurrion,et al.  An example of simulation optimisation using a neural network metamodel: finding the optimum number of kanbans in a manufacturing system , 1997 .

[5]  Christian N. Madu Simulation in manufacturing: A regression metamodel approach , 1990 .

[6]  Haldun Aytug,et al.  Determining the Number of Kanbans: A Simulation Metamodeling Approach , 1996, Simul..

[7]  B. Yu,et al.  Metamodels in manufacturing: a review , 1994 .

[8]  Akif Asil Bulgak,et al.  Integrating a modified simulated annealing algorithm with the simulation of a manufacturing system to optimize buffer sizes in automatic assembly systems , 1988, WSC '88.

[9]  Peter O'Grady,et al.  Kanban controlled pull systems: an analytic approach , 1989 .

[10]  Christian N. Madu,et al.  Group screening and Taguchi design in the optimization of multi-echelon maintenance float simulation metamodels , 1992, Comput. Oper. Res..

[11]  Jorge Haddock,et al.  Simulation optimization using simulated annealing , 1992 .

[12]  Gabriel R. Bitran,et al.  A mathematical programming approach to a deterministic Kanban system , 1987 .

[13]  Russell R. Barton,et al.  Metamodels for simulation input-output relations , 1992, WSC '92.

[14]  Li Lin,et al.  Manufacturing cell operating characteristics , 1993 .

[15]  Loren Paul Rees,et al.  Dynamically Adjusting the Number of Kanbans in a Just-in-Time Production System Using Estimated Values of Leadtime , 1987 .

[16]  Osamu Kimura,et al.  Desiǵn and analysis of Pull System, a method of multi-staǵe production control , 1981 .

[17]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[18]  Gerald W. Evans,et al.  Comparison of global search methods for design optimization using simulation , 1991, 1991 Winter Simulation Conference Proceedings..

[19]  Robert W. Blanning,et al.  The construction and implementation of metamodels , 1975 .

[20]  John B. Kidd,et al.  Toyota Production System , 1993 .

[21]  Ronald G. Askin,et al.  Determining the number of kanbans in multi-item just-in-time systems , 1993 .

[22]  Tadaaki Fukukawa,et al.  The determination of the optimal number of kanbans in a Just-In-Time production system , 1993 .

[23]  Gülser Köksal,et al.  Computer-Aided Planning and Design of Manufacturing Simulation Experiments , 1996, Simul..

[24]  Minghe Sun,et al.  Determining buffer location and size in production lines using tabu search , 1998, Eur. J. Oper. Res..

[25]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[26]  Berna Dengiz,et al.  Computer simulation of a PCB production line: metamodeling approach , 2000 .

[27]  J. Muckstadt,et al.  A comparison of alternative Kanban control mechanisms , 1991 .