Landen inequalities for hypergeometric functions

[1]  Frits Beukers,et al.  Monodromy for the hypergeometric functionnFn−1 , 1989 .

[2]  G. Anderson,et al.  Conformal Invariants, Inequalities, and Quasiconformal Maps , 1997 .

[3]  Richard Askey,et al.  Ramanujan and hypergeometric and basic hypergeometric series , 1990 .

[4]  P. Deligné,et al.  Commensurabilities among lattices in PU(1,n) , 1993 .

[5]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[6]  Matti Vuorinen,et al.  Asymptotic expansions and in-equalities for hypergeometric functions , 1997 .

[7]  Andrei Zelevinsky,et al.  Generalized Euler integrals and A-hypergeometric functions , 1990 .

[8]  R. Barnard,et al.  INEQUALITIES FOR ZERO-BALANCED HYPERGEOMETRIC FUNCTIONS , 1995 .

[9]  Jonathan M. Borwein,et al.  The Arithmetic-Geometric Mean and Fast Computation of Elementary Functions , 1984 .

[10]  Doron Zeilberger,et al.  An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .

[11]  Matti Vuorinen,et al.  HYPERGEOMETRIC FUNCTIONS AND ELLIPTIC INTEGRALS , 1992 .

[12]  Jacques Dutka The early history of the hypergeometric function , 1984 .

[13]  Bruce C. Berndt,et al.  Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, p, and the Ladies Diary , 1988 .

[14]  R. Kühnau Eine Methode, die Positivität einer Funktion zu prüfen , 1994 .

[15]  M. Vamanamurthy,et al.  Sharp estimates for complete elliptic integrals , 1996 .

[16]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[17]  John L. Gustafson,et al.  Asymptotic approximations for symmetric elliptic integrals , 1993, math/9310223.

[18]  V. Varadarajan,et al.  Linear meromorphic differential equations: A modern point of view , 1996 .

[19]  Hari M. Srivastava,et al.  Current topics in analytic function theory , 1992 .