Landen inequalities for hypergeometric functions
暂无分享,去创建一个
[1] Frits Beukers,et al. Monodromy for the hypergeometric functionnFn−1 , 1989 .
[2] G. Anderson,et al. Conformal Invariants, Inequalities, and Quasiconformal Maps , 1997 .
[3] Richard Askey,et al. Ramanujan and hypergeometric and basic hypergeometric series , 1990 .
[4] P. Deligné,et al. Commensurabilities among lattices in PU(1,n) , 1993 .
[5] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[6] Matti Vuorinen,et al. Asymptotic expansions and in-equalities for hypergeometric functions , 1997 .
[7] Andrei Zelevinsky,et al. Generalized Euler integrals and A-hypergeometric functions , 1990 .
[8] R. Barnard,et al. INEQUALITIES FOR ZERO-BALANCED HYPERGEOMETRIC FUNCTIONS , 1995 .
[9] Jonathan M. Borwein,et al. The Arithmetic-Geometric Mean and Fast Computation of Elementary Functions , 1984 .
[10] Doron Zeilberger,et al. An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .
[11] Matti Vuorinen,et al. HYPERGEOMETRIC FUNCTIONS AND ELLIPTIC INTEGRALS , 1992 .
[12] Jacques Dutka. The early history of the hypergeometric function , 1984 .
[13] Bruce C. Berndt,et al. Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, p, and the Ladies Diary , 1988 .
[14] R. Kühnau. Eine Methode, die Positivität einer Funktion zu prüfen , 1994 .
[15] M. Vamanamurthy,et al. Sharp estimates for complete elliptic integrals , 1996 .
[16] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[17] John L. Gustafson,et al. Asymptotic approximations for symmetric elliptic integrals , 1993, math/9310223.
[18] V. Varadarajan,et al. Linear meromorphic differential equations: A modern point of view , 1996 .
[19] Hari M. Srivastava,et al. Current topics in analytic function theory , 1992 .