3D anisotropic mesh adaptation by mesh modification

This paper describes an effective anisotropic mesh adaptation procedure for general 3D geometries using mesh modification operations. The procedure consists of four interacted high level components: refinement, coarsening, projecting boundary vertices and shape correction. All components are governed by an anisotropic mesh metric field that represents the desired element size and shape distribution. The paper presents the application for the procedure in anisotropic adaptive 3D simulations.

[1]  Mark S. Shephard,et al.  On Anisotropic Mesh Generation and Quality Control in Complex Flow Problems , 2001, IMR.

[2]  Gustavo C. Buscaglia,et al.  Anisotropic mesh optimization and its application in adaptivity , 1997 .

[3]  J. Peiro,et al.  Adaptive remeshing for three-dimensional compressible flow computations , 1992 .

[4]  Kenneth E. Jansen,et al.  A stabilized finite element method for the incompressible Navier–Stokes equations using a hierarchical basis , 2001 .

[5]  M. Rivara Selective refinement/derefinement algorithms for sequences of nested triangulations , 1989 .

[6]  William H. Beyer,et al.  CRC standard mathematical tables , 1976 .

[7]  A. Liu,et al.  On the shape of tetrahedra from bisection , 1994 .

[8]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[9]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part II. Structured grids , 2002 .

[10]  Barry Joe,et al.  Quality Local Refinement of Tetrahedral Meshes Based on Bisection , 1995, SIAM J. Sci. Comput..

[11]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[12]  J. Bey,et al.  Tetrahedral grid refinement , 1995, Computing.

[13]  Dimitri J. Mavriplis,et al.  Adaptive mesh generation for viscous flows using delaunay triangulation , 1990 .

[14]  Mark S. Shephard,et al.  Parallel refinement and coarsening of tetrahedral meshes , 1999 .

[15]  Peter Hansbo,et al.  On advancing front mesh generation in three dimensions , 1995 .

[16]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .

[17]  Raúl A. Feijóo,et al.  Adaptive finite element computational fluid dynamics using an anisotropic error estimator , 2000 .

[18]  J. Remacle,et al.  Anisotropic adaptive simulation of transient flows using discontinuous Galerkin methods , 2005 .

[19]  Barry Joe,et al.  Quality local refinement of tetrahedral meshes based on 8-subtetrahedron subdivision , 1996, Math. Comput..

[20]  Paul-Louis George,et al.  Optimization of Tetrahedral Meshes , 1995 .

[21]  Martin Berzins,et al.  A 3D UNSTRUCTURED MESH ADAPTATION ALGORITHM FOR TIME-DEPENDENT SHOCK-DOMINATED PROBLEMS , 1997 .

[22]  S. H. Lo,et al.  3D anisotropic mesh refinement in compliance with a general metric specification , 2001 .

[23]  Bharat K. Soni,et al.  Mesh Generation , 2020, Handbook of Computational Geometry.

[24]  B. Joe,et al.  Relationship between tetrahedron shape measures , 1994 .

[25]  Claes Johnson,et al.  Adaptive error control for multigrid finite element , 1995, Computing.

[26]  M. Rivara,et al.  A 3-D refinement algorithm suitable for adaptive and multi-grid techniques , 1992 .

[27]  B. Joe Three-dimensional triangulations from local transformations , 1989 .

[28]  Mark T. Jones,et al.  Adaptive refinement of unstructured finite-element meshes , 1997 .

[29]  F. Bornemann,et al.  Adaptive multivlevel methods in three space dimensions , 1993 .

[30]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[31]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[32]  Paul-Louis George,et al.  An efficient algorithm for 3D adaptive meshing , 2001 .

[33]  Kenji Shimada,et al.  High Quality Anisotropic Tetrahedral Mesh Generation Via Ellipsoidal Bubble Packing , 2000, IMR.

[34]  B. H. V. Topping,et al.  Finite Elements: Techniques and Developments , 2000 .

[35]  Y. Kallinderis,et al.  Adaptive refinement-coarsening scheme for three-dimensional unstructured meshes , 1993 .

[36]  J. Hopcroft,et al.  Modeling, mesh generation, and adaptive numerical methods for partial differential equations , 1995 .

[37]  Joseph M. Maubach,et al.  Local bisection refinement for $n$-simplicial grids generated by reflection , 2017 .

[38]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[39]  M. Rivara NEW LONGEST-EDGE ALGORITHMS FOR THE REFINEMENT AND/OR IMPROVEMENT OF UNSTRUCTURED TRIANGULATIONS , 1997 .

[40]  Mark S. Shephard,et al.  a General Topology-Based Mesh Data Structure , 1997 .

[41]  Jean-François Remacle,et al.  Anisotropic Mesh Gradation Control , 2004, IMR.

[42]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM J. Sci. Comput..

[43]  Mark S. Shephard,et al.  Accounting for curved domains in mesh adaptation , 2003 .

[44]  Michael L. Accorsi,et al.  Parachute fluid-structure interactions: 3-D computation , 2000 .