Effects of the cornea and the crystalline lens on the aberrations of the complete eye

In order to understand the relative contribution of the wave-front aberrations of the cornea and the crystalline lens to the retinal image quality in the human eye, we have measured the wave-front aberrations of the anterior corneal surface, the posterior corneal surface and the complete eye with a corneal topographic system (Orbscan) and a Hartmann-Shack wave-front sensor. The 20 subjects selected to participate in the study are all no eye diseases, covering a range of age from 18 to 25. All the subjects have refractive errors of defocus varying from 0.5 D to 5 D and astigmatism varying from 0.1 D to 1.5D. Using the Orbscan, we obtained the discrete set of corneal elevation data in radial distribution over the pupil plane for the anterior and the posterior corneal surfaces directly, and the data are then transformed into wave-front aberrations of both the corneal surfaces. The wave-front aberrations of the two surfaces are then used to acquire the aberrations in whole cornea. The aberration contribution of the crystalline lens is obtained by subtracting the aberrations in the cornea from that in the complete eye. It is shown that the combination of the aberrations between the crystalline lens and the cornea could be either a compensatory or an additive process. The effect of the combination between the anterior and the posterior corneal surface is also complicated, and the aberration compensation, as well as aberration addition can be observed. It is shown from statistics point of view that the anterior corneal surface contributes more lower-order aberrations (astigmatism) to the complete eye, while the posterior corneal surface and the crystalline lens play a more important role in contributing higher-order aberrations.

[1]  F. Berny,et al.  Contribution of the crystalline lens to the spherical aberration of the eye. , 1973, Journal of the Optical Society of America.

[2]  P Artal,et al.  Contributions of the cornea and the lens to the aberrations of the human eye. , 1998, Optics letters.

[3]  Junzhong Liang,et al.  Aberrations and retinal image quality of the normal human eye. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  P. Artal,et al.  Compensation of corneal aberrations by the internal optics in the human eye. , 2001, Journal of vision.

[5]  Richard Held,et al.  Wave-front aberrations in the anterior corneal surface and the whole eye. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  Junzhong Liang,et al.  Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  P Artal,et al.  Analysis of the performance of the Hartmann-Shack sensor in the human eye. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[8]  Pablo Artal,et al.  Contribution of the cornea and internal surfaces to the change of ocular aberrations with age. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.