L-and Y-curve approaches for the selection of regularization parameter in geophysical diffraction tomography
暂无分享,去创建一个
[1] Christopher Juhlin,et al. Nonlinear 3-D traveltime inversion of crosshole data with an application in the area of the Middle Ural Mountains , 2001 .
[2] Martin Hanke,et al. A General Heuristic for Choosing the Regularization Parameter in Ill-Posed Problems , 1996, SIAM J. Sci. Comput..
[3] M. Toksöz,et al. Diffraction tomography and multisource holography applied to seismic imaging , 1987 .
[4] Per Christian Hansen,et al. L-Curve Curvature Bounds via Lanczos Bidiagonalization , 2001 .
[5] D. Oldenburg,et al. A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems , 2004 .
[6] D. Titterington. General structure of regularization procedures in image reconstruction , 1985 .
[7] W. Rodi,et al. Regularization and Inversion of Linear Geophysical Data , 1993 .
[8] C. Vogel. Non-convergence of the L-curve regularization parameter selection method , 1996 .
[9] Dianne P. O'Leary,et al. The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..
[10] P. J. Mc Carthy. Direct analytic model of the L-curve for Tikhonov regularization parameter selection , 2003 .
[11] W. Rodi,et al. Nonlinear seismic diffraction tomography using minimum structure constraints , 1994 .
[12] A. Devaney. Geophysical Diffraction Tomography , 1984, IEEE Transactions on Geoscience and Remote Sensing.
[13] Roland Roberts,et al. A practical regularization for seismic tomography , 1999 .
[14] P. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .
[15] G. Golub,et al. Estimation of the L-Curve via Lanczos Bidiagonalization , 1999 .
[16] Richard D. Ray,et al. Improved smoothing of an altimetric ocean‐tide model with global Proudman functions , 1994 .
[17] W. Rodi,et al. Nonlinear waveform tomography applied to crosshole seismic data , 1996 .
[18] Ken D. Sauer,et al. A generalized Gaussian image model for edge-preserving MAP estimation , 1993, IEEE Trans. Image Process..
[19] S. Twomey,et al. On the Numerical Solution of Fredholm Integral Equations of the First Kind by the Inversion of the Linear System Produced by Quadrature , 1963, JACM.
[20] Misha Elena Kilmer,et al. Choosing Regularization Parameters in Iterative Methods for Ill-Posed Problems , 2000, SIAM J. Matrix Anal. Appl..
[21] M. Hanke. Limitations of the L-curve method in ill-posed problems , 1996 .
[22] L. E. Larsen,et al. Limitations of Imaging with First-Order Diffraction Tomography , 1984 .
[23] P. Inderwiesen,et al. Fundamentals of Seismic Tomography , 1994 .
[24] S. Gómez,et al. The triangle method for finding the corner of the L-curve , 2002 .
[25] E. Miller,et al. Efficient determination of multiple regularization parameters in a generalized L-curve framework , 2002 .
[26] Per Christian Hansen,et al. Analysis of Discrete Ill-Posed Problems by Means of the L-Curve , 1992, SIAM Rev..
[27] Teresa Reginska,et al. A Regularization Parameter in Discrete Ill-Posed Problems , 1996, SIAM J. Sci. Comput..