Quasi-optimality of Petrov-Galerkin discretizations of parabolic problems with random coefficients

We consider a linear parabolic problem with random elliptic operator in the usual Gelfand triple setting. We do not assume uniform bounds on the coercivity and boundedness constants, but allow them to be random variables. The parabolic problem is studied in a weak space-time formulation, where we can derive explicit formulas for the inf-sup constants. Under suitable assumptions we prove existence of moments of the solution. We also prove quasi-optimal error estimates for piecewise polynomial Petrov-Galerkin discretizations.

[1]  W. Hackbusch Optimal $H^{p,{p/2}} $ Error Estimates for a Parabolic Galerkin Method , 1981 .

[2]  Karsten Urban,et al.  A new error bound for reduced basis approximation of parabolic partial differential equations , 2012 .

[3]  Stig Larsson,et al.  Numerical Solution of Parabolic Problems Based on a Weak Space-Time Formulation , 2016, Comput. Methods Appl. Math..

[4]  M. Handzic 5 , 1824, The Banality of Heidegger.

[5]  Karsten Urban,et al.  An improved error bound for reduced basis approximation of linear parabolic problems , 2013, Math. Comput..

[6]  Stig Larsson,et al.  A Weak Space-Time Formulation for the Linear Stochastic Heat Equation , 2014, 1402.5842.

[7]  Julia Charrier,et al.  Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..

[8]  Roman Andreev,et al.  Stability of sparse space–time finite element discretizations of linear parabolic evolution equations , 2013 .

[9]  Rob P. Stevenson,et al.  Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..

[10]  C. Mollet,et al.  Parabolic PDEs in Space-Time Formulations: Stability for Petrov-Galerkin Discretizations with B-Splines and Existence of Moments for Problems with Random Coefficients , 2016 .

[11]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[12]  Christian Mollet,et al.  Stability of Petrov–Galerkin Discretizations: Application to the Space-Time Weak Formulation for Parabolic Evolution Problems , 2014, Comput. Methods Appl. Math..

[13]  F. Tantardini,et al.  QUASI-OPTIMALITY IN THE BACKWARD EULER-GALERKIN METHOD FOR LINEAR PARABOLIC PROBLEMS , 2014 .

[14]  Ivo Babuška,et al.  The h‐p version of the finite element method for parabolic equations. Part I. The p‐version in time , 1989 .

[15]  R. Nochetto,et al.  Theory of adaptive finite element methods: An introduction , 2009 .

[16]  Randolph E. Bank,et al.  On the $${H^1}$$H1-stability of the $${L_2}$$L2-projection onto finite element spaces , 2014, Numerische Mathematik.

[17]  Rob P. Stevenson,et al.  Adaptive Wavelet Schemes for Parabolic Problems: Sparse Matrices and Numerical Results , 2011, SIAM J. Numer. Anal..

[18]  E. Süli,et al.  Adaptive Galerkin approximation algorithms for partial differential equations in infinite dimensions , 2012 .

[19]  A. Teckentrup Multilevel Monte Carlo Methods and Uncertainty Quantication , 2013 .