Quasi-optimality of Petrov-Galerkin discretizations of parabolic problems with random coefficients
暂无分享,去创建一个
Stig Larsson | Christian Mollet | Matteo Molteni | M. Molteni | S. Larsson | C. Mollet | Christian Mollet
[1] W. Hackbusch. Optimal $H^{p,{p/2}} $ Error Estimates for a Parabolic Galerkin Method , 1981 .
[2] Karsten Urban,et al. A new error bound for reduced basis approximation of parabolic partial differential equations , 2012 .
[3] Stig Larsson,et al. Numerical Solution of Parabolic Problems Based on a Weak Space-Time Formulation , 2016, Comput. Methods Appl. Math..
[4] M. Handzic. 5 , 1824, The Banality of Heidegger.
[5] Karsten Urban,et al. An improved error bound for reduced basis approximation of linear parabolic problems , 2013, Math. Comput..
[6] Stig Larsson,et al. A Weak Space-Time Formulation for the Linear Stochastic Heat Equation , 2014, 1402.5842.
[7] Julia Charrier,et al. Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..
[8] Roman Andreev,et al. Stability of sparse space–time finite element discretizations of linear parabolic evolution equations , 2013 .
[9] Rob P. Stevenson,et al. Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..
[10] C. Mollet,et al. Parabolic PDEs in Space-Time Formulations: Stability for Petrov-Galerkin Discretizations with B-Splines and Existence of Moments for Problems with Random Coefficients , 2016 .
[11] C. DeWitt-Morette,et al. Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .
[12] Christian Mollet,et al. Stability of Petrov–Galerkin Discretizations: Application to the Space-Time Weak Formulation for Parabolic Evolution Problems , 2014, Comput. Methods Appl. Math..
[13] F. Tantardini,et al. QUASI-OPTIMALITY IN THE BACKWARD EULER-GALERKIN METHOD FOR LINEAR PARABOLIC PROBLEMS , 2014 .
[14] Ivo Babuška,et al. The h‐p version of the finite element method for parabolic equations. Part I. The p‐version in time , 1989 .
[15] R. Nochetto,et al. Theory of adaptive finite element methods: An introduction , 2009 .
[16] Randolph E. Bank,et al. On the $${H^1}$$H1-stability of the $${L_2}$$L2-projection onto finite element spaces , 2014, Numerische Mathematik.
[17] Rob P. Stevenson,et al. Adaptive Wavelet Schemes for Parabolic Problems: Sparse Matrices and Numerical Results , 2011, SIAM J. Numer. Anal..
[18] E. Süli,et al. Adaptive Galerkin approximation algorithms for partial differential equations in infinite dimensions , 2012 .
[19] A. Teckentrup. Multilevel Monte Carlo Methods and Uncertainty Quantication , 2013 .