CIRCULANT PRECONDITIONERS FOR FAILURE PRONE MANUFACTURING SYSTEMS

[1]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[2]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[3]  Gene H. Golub,et al.  Matrix computations , 1983 .

[4]  R. Akella,et al.  Optimal control of production rate in a failure prone manufacturing system , 1985, 1985 24th IEEE Conference on Decision and Control.

[5]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[6]  R. Chan Iterative methods for overflow queuing models II , 1988 .

[7]  Panganamala Ramana Kumar,et al.  Optimality of Zero-Inventory Policies for Unreliable Manufacturing Systems , 1988, Oper. Res..

[8]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[9]  Suresh P. Sethi,et al.  Hierarchical controls in stochastic manufacturing systems with machines in tandem , 1992 .

[10]  Dong Xiang,et al.  The queueing equivalence to a manufacturing system with failures , 1993 .

[11]  John B. Kidd,et al.  Toyota Production System , 1993 .

[12]  Xun Yu Zhou,et al.  Feedback production planning in a stochastic two-machine flowshop: Asymptotic analysis and computational results , 1993 .

[13]  Jianqiang Hu,et al.  Optimality of hedging point policies in the production control of failure prone manufacturing systems , 1994, IEEE Trans. Autom. Control..

[14]  X. Zhou,et al.  Stochastic dynamic job shops and hierarchical production planning , 1994, IEEE Transactions on Automatic Control.

[15]  Jian-Qiang Hu Production rate control for failure-prone production systems with no backlog permitted , 1995 .

[16]  X. Zhou,et al.  Circulant Preconditioners for Markov-Modulated Poisson Processes and Their Applications to Manufacturing Systems , 1997, SIAM J. Matrix Anal. Appl..