Variability and Reliability of Single-Walled Carbon Nanotube Field Effect Transistors

Excellent electrical performance and extreme sensitivity to chemical species in semiconducting Single-Walled Carbon NanoTubes (s-SWCNTs) motivated the study of using them to replace silicon as a next generation field effect transistor (FET) for electronic, optoelectronic, and biological applications. In addition, use of SWCNTs in the recently studied flexible electronics appears more promising because of SWCNTs’ inherent flexibility and superior electrical performance over silicon-based materials. All these applications require SWCNT-FETs to have a wafer-scale uniform and reliable performance over time to a level that is at least comparable with the currently used silicon-based nanoscale FETs. Due to similarity in device configuration and its operation, SWCNT-FET inherits most of the variability and reliability concerns of silicon-based FETs, namely the ones originating from line edge roughness, metal work-function variation, oxide defects, etc. Additional challenges arise from the lack of chirality control in as-grown and post-processed SWCNTs and also from the presence of unstable hydroxyl (–OH) groups near the interface of SWCNT and dielectric. In this review article, we discuss these variability and reliability origins in SWCNT-FETs. Proposed solutions for mitigating each of these sources are presented and a future perspective is provided in general, which are required for commercial use of SWCNT-FETs in future nanoelectronic applications.

[1]  Chongwu Zhou,et al.  Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy , 2012, Nature Communications.

[2]  Xin Peng Wang,et al.  Metal-Gate Work Function Modulation Using Hafnium Alloys Obtained by the Interdiffusion of Thin Metallic Layers , 2007 .

[3]  Albert Lin,et al.  Current Scaling in Aligned Carbon Nanotube Array Transistors With Local Bottom Gating , 2010, IEEE Electron Device Letters.

[4]  J.F. Zhang,et al.  Assessment of capture cross sections and effective density of electron traps generated in silicon dioxides , 2006, IEEE Transactions on Electron Devices.

[5]  Houjin Huang,et al.  Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation. , 2006, The journal of physical chemistry. B.

[6]  Yutaka Ohno,et al.  n-type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes , 2005 .

[7]  Riichiro Saito,et al.  Characterizing carbon nanotube samples with resonance Raman scattering , 2003 .

[8]  E. Klumperink,et al.  Intrinsic 1/f device noise reduction and its effect on phase noise in CMOS ring oscillators , 1999, IEEE J. Solid State Circuits.

[9]  Subhasish Mitra,et al.  CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. , 2009, Nano letters.

[10]  W. Haensch,et al.  High-density integration of carbon nanotubes via chemical self-assembly. , 2012, Nature nanotechnology.

[11]  Semiconducting enriched carbon nanotube aligned arrays of tunable density and their electrical transport properties. , 2011, ACS nano.

[12]  Gong Gu,et al.  Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors , 2007 .

[13]  M. Dresselhaus,et al.  Cutting lines near the Fermi energy of single-wall carbon nanotubes , 2005 .

[14]  Po-Chiang Chen,et al.  Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. , 2009, ACS nano.

[15]  Andrea L. Lacaita,et al.  Separation of electron and hole traps by transient current analysis , 1999 .

[16]  Qing Zhang,et al.  Current instability of carbon nanotube field effect transistors , 2007, Nanotechnology.

[17]  Study of Random Telegraph Signals in Single-Walled Carbon Nanotube Field Effect Transistors , 2006, IEEE Transactions on Nanotechnology.

[18]  Michael S Strano,et al.  Concomitant length and diameter separation of single-walled carbon nanotubes. , 2004, Journal of the American Chemical Society.

[19]  J. Robinson,et al.  Correlation between structure and electrical transport in ion-irradiated graphene grown on Cu foils , 2010, 1012.4060.

[20]  S. Messenger,et al.  Radiation effects in single-walled carbon nanotube papers , 2010 .

[21]  F. Hooge 1/f noise sources , 1994 .

[22]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[23]  John A Rogers,et al.  Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. , 2009, Nano letters.

[24]  S. Roth,et al.  Raman spectroscopy of single-wall carbon nanotubes and graphite irradiated by γ rays , 2005 .

[25]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .

[26]  Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors , 2006, cond-mat/0612012.

[27]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[28]  Xue Lin,et al.  Synthesis and device applications of high-density aligned carbon nanotubes using low-pressure chemical vapor deposition and stacked multiple transfer , 2010 .

[29]  Michael B. Weissman Low-Frequency Noise as a Tool to Study Disordered Materials , 1996 .

[30]  A. Offenhäusser,et al.  Transport properties of single-walled carbon nanotube transistors after gamma radiation treatment , 2010 .

[31]  Ji-Yong Park,et al.  Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. , 2005, Physical review letters.

[32]  Lode K. J. Vandamme,et al.  Noise as a diagnostic tool for quality and reliability of electronic devices , 1994 .

[33]  M. S. Dresselhausa,et al.  Raman spectroscopy of carbon nanotubes , 2004 .

[34]  L. Segev,et al.  Atomic-step-templated formation of single wall carbon nanotube patterns. , 2004, Angewandte Chemie.

[35]  László P. Biró,et al.  Electron transport in Ar+‐irradiated single wall carbon nanotubes , 2006 .

[36]  Hai Wei,et al.  Linear increases in carbon nanotube density through multiple transfer technique. , 2011, Nano letters.

[37]  P. Avouris,et al.  Novel carbon nanotube FET design with tunable polarity , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[38]  John A. Rogers,et al.  Sources of Hysteresis in Carbon Nanotube Field‐Effect Transistors and Their Elimination Via Methylsiloxane Encapsulants and Optimized Growth Procedures , 2012 .

[39]  Michael S. Fuhrer,et al.  High-Mobility Nanotube Transistor Memory , 2002 .

[40]  Horst Hahn,et al.  Ultra-large-scale directed assembly of single-walled carbon nanotube devices. , 2007, Nano letters.

[41]  Hai Wei,et al.  Air-stable technique for fabricating n-type carbon nanotube FETs , 2011, 2011 International Electron Devices Meeting.

[42]  John A. Rogers,et al.  Inorganic Semiconductors for Flexible Electronics , 2007 .

[43]  Paul A. Solomon,et al.  Breakdown in silicon oxide−A review , 1977 .

[44]  Qian Wang,et al.  Electrical contacts to carbon nanotubes down to 1nm in diameter , 2005 .

[45]  Yu Cao,et al.  Compact modeling of carbon nanotube transistor for early stage process-design exploration , 2007, Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07).

[46]  J. Rogers,et al.  Scaling properties in transistors that use aligned arrays of single-walled carbon nanotubes. , 2010, Nano letters.

[47]  John A Rogers,et al.  Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates. , 2005, Journal of the American Chemical Society.

[48]  Zhihong Chen,et al.  Length scaling of carbon nanotube transistors. , 2010, Nature nanotechnology.

[49]  Joel Cummings Safari Tech Books Online , 2013 .

[50]  Richard Martel,et al.  Probing charge transfer at surfaces using graphene transistors. , 2011, Nano letters.

[51]  A. Jen,et al.  Directed assembly of single-walled carbon nanotubes via drop-casting onto a UV-patterned photosensitive monolayer. , 2008, Journal of the American Chemical Society.

[52]  John A Rogers,et al.  Radio frequency analog electronics based on carbon nanotube transistors , 2008, Proceedings of the National Academy of Sciences.

[53]  S. A. McGill,et al.  High-performance, hysteresis-free carbon nanotube field-effect transistors via directed assembly , 2006 .

[54]  Phaedon Avouris,et al.  Low-frequency current fluctuations in individual semiconducting single-wall carbon nanotubes. , 2006, Nano letters.

[55]  Charge-Injection-Induced Time Decay in Carbon Nanotube Network-Based FETs , 2010, IEEE Electron Device Letters.

[56]  J. Rogers,et al.  High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. , 2007, Nature nanotechnology.

[57]  H. Hughes,et al.  Radiation effects and hardening of MOS technology: devices and circuits , 2003 .

[58]  E. Pop,et al.  Avalanche-induced current enhancement in semiconducting carbon nanotubes. , 2008, Physical review letters.

[59]  A. Di Bartolomeo,et al.  Record Endurance for Single-Walled Carbon Nanotube–Based Memory Cell , 2010, Nanoscale research letters.

[60]  Chenming Hu,et al.  Dual work function metal gate CMOS technology using metal interdiffusion , 2001, IEEE Electron Device Letters.

[61]  M. Weissman 1/f noise and other slow, nonexponential kinetics in condensed matter. , 1988 .

[62]  Muhammad A. Alam,et al.  SILC as a measure of trap generation and predictor of T/sub BD/ in ultrathin oxides , 2002 .

[63]  S. Mahapatra,et al.  Recent Issues in Negative-Bias Temperature Instability: Initial Degradation, Field Dependence of Interface Trap Generation, Hole Trapping Effects, and Relaxation , 2007, IEEE Transactions on Electron Devices.

[64]  Davood Shahrjerdi,et al.  Variability in carbon nanotube transistors: improving device-to-device consistency. , 2012, ACS nano.

[65]  Random Telegraph Signals and Noise Behaviors in Carbon Nanotube Transistors , 2006, 2006 64th Device Research Conference.

[66]  D. Novikov,et al.  Mott Insulating State in Ultraclean Carbon Nanotubes , 2009, Science.

[67]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[68]  Phaedon Avouris,et al.  The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. , 2005, Nano letters.

[69]  Jeffrey Bokor,et al.  Effect of diameter variation in a large set of carbon nanotube transistors. , 2006, Nano letters.

[70]  Richard Martel,et al.  The Role of the Oxygen/Water Redox Couple in Suppressing Electron Conduction in Field‐Effect Transistors , 2009 .

[71]  A. Haslett Electronics , 1948 .

[72]  K. Roy,et al.  Variation Tolerance in a Multichannel Carbon-Nanotube Transistor for High-Speed Digital Circuits , 2009, IEEE Transactions on Electron Devices.

[73]  J. Robinson,et al.  Total ionizing dose-hardened carbon nanotube thin-film transistors with silicon oxynitride gate dielectrics , 2011 .

[74]  H. Wong,et al.  Impact of a Process Variation on Nanowire and Nanotube Device Performance , 2007, IEEE Transactions on Electron Devices.

[75]  J. Robertson,et al.  Hysteresis suppression in self-assembled single-wall nanotube field effect transistors , 2008 .

[76]  W. Haensch,et al.  Carbon nanotube complementary wrap-gate transistors. , 2013, Nano letters.

[77]  Patrick M. Lenahan,et al.  Hole traps and trivalent silicon centers in metal/oxide/silicon devices , 1984 .

[78]  P. Lenahan Dominating Defects in the MOS System: Pb and E0 Centers , 2008 .

[79]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[80]  Wilfried Haensch,et al.  Evaluation of field-effect mobility and contact resistance of transistors that use solution-processed single-walled carbon nanotubes. , 2012, ACS nano.

[81]  Darlene Hamilton,et al.  A 4 Megabit Carbon Nanotube-based nonvolatile memory (NRAM) , 2010, 2010 Proceedings of ESSCIRC.

[82]  A. Visconti,et al.  Scaling trends for random telegraph noise in deca-nanometer Flash memories , 2008, 2008 IEEE International Electron Devices Meeting.

[83]  Lianmao Peng,et al.  High-performance carbon nanotube light-emitting diodes with asymmetric contacts. , 2011, Nano letters.

[84]  L.K.J. Vandamme,et al.  1/f noise in MOS devices, mobility or number fluctuations? , 1994 .

[85]  Alfred B. Anderson,et al.  Charge Transfer Equilibria Between Diamond and an Aqueous Oxygen Electrochemical Redox Couple , 2007, Science.

[86]  J. Rogers,et al.  Improved Density in Aligned Arrays of Single‐Walled Carbon Nanotubes by Sequential Chemical Vapor Deposition on Quartz , 2010, Advanced materials.

[87]  Qian Wang,et al.  Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. , 2003, Nano letters.

[88]  Mark S. Lundstrom,et al.  Sub-10 nm carbon nanotube transistor , 2011, 2011 International Electron Devices Meeting.

[89]  Ha Uk Chung,et al.  Electrostatic dimension of aligned-array carbon nanotube field-effect transistors. , 2013, ACS nano.

[90]  Philip G. Collins,et al.  1/f noise in carbon nanotubes , 2000 .

[91]  Hai Wei,et al.  Carbon nanotube electronics - Materials, devices, circuits, design, modeling, and performance projection , 2011, 2011 International Electron Devices Meeting.

[92]  Kwanwoo Shin,et al.  Radiation hardness of the electrical properties of carbon nanotube network field effect transistors under high-energy proton irradiation , 2006, Nanotechnology.

[93]  J. Rogers,et al.  Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates , 2008, Nature.

[94]  Kang L. Wang,et al.  Coulomb attractive random telegraph signal in a single-walled carbon nanotube , 2006 .

[95]  Changxin Chen,et al.  Ultrasonic nanowelding of carbon nanotubes to metal electrodes , 2006 .

[96]  Muhammad Ashraful Alam,et al.  Reliability- and Process-variation aware design of integrated circuits — A broader perspective , 2008, 2011 International Reliability Physics Symposium.

[97]  John A. Rogers,et al.  Improved Synthesis of Aligned Arrays of Single-Walled Carbon Nanotubes and Their Implementation in Thin Film Type Transistors† , 2007 .

[98]  Impact Excitation by Hot Carriers in Carbon Nanotubes , 2006, cond-mat/0608678.

[99]  H.-S. Philip Wong,et al.  Characterization and Design of Logic Circuits in the Presence of Carbon Nanotube Density Variations , 2011, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[100]  C. Rutherglen,et al.  Nanotube electronics for radiofrequency applications. , 2009, Nature nanotechnology.

[101]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[102]  Monte Manning,et al.  A 3D stackable Carbon Nanotube-based nonvolatile memory (NRAM) , 2010, 2010 Proceedings of the European Solid State Device Research Conference.

[103]  K. Lister,et al.  Resist-assisted assembly of single-walled carbon nanotube devices with nanoscale precision , 2012 .

[104]  S. Khondaker,et al.  High quality solution processed carbon nanotube transistors assembled by dielectrophoresis , 2010 .

[105]  A. Ionescu,et al.  Self-Aligned Lateral Dual-Gate Suspended-Body Single-Walled Carbon Nanotube Field-Effect Transistors , 2012 .

[106]  H. Dai,et al.  Measurement of ionizing radiation using carbon nanotube field effect transistor , 2005, Physics in medicine and biology.

[107]  H. Hongo,et al.  Relationship between carbon nanotube density and hysteresis characteristics of carbon nanotube random network-channel field effect transistors , 2010 .

[108]  K. Ikeda,et al.  Competition and cooperation between lattice-oriented growth and step-templated growth of aligned carbon nanotubes on sapphire , 2007 .

[109]  P. Avouris,et al.  Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown , 2001, Science.

[110]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[111]  H. Wong,et al.  Wafer-Scale Growth and Transfer of Aligned Single-Walled Carbon Nanotubes , 2009, IEEE Transactions on Nanotechnology.

[112]  W. Haensch,et al.  Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. , 2013, Nature nanotechnology.

[113]  Jing Guo,et al.  Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-κ Gate Dielectrics , 2004 .

[114]  John A Rogers,et al.  Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. , 2013, Nature nanotechnology.

[115]  Yung-Huei Lee,et al.  Managing Bias-Temperature Instability for Product Reliability , 2007, 2007 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA).

[116]  Muhammad A. Alam,et al.  Performance limits of nanobiosensors , 2006 .

[117]  Eric Pop,et al.  Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes , 2011, Science.

[118]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[119]  M. Shim,et al.  Atomic layer deposited Al2O3 for gate dielectric and passivation layer of single-walled carbon nanotube transistors , 2007 .

[120]  Kang L Wang,et al.  Correlated random telegraph signal and low-frequency noise in carbon nanotube transistors. , 2008, Nano letters.

[121]  L. T. Zhuravlev The surface chemistry of amorphous silica. Zhuravlev model , 2000 .

[122]  John A. Rogers,et al.  Effect of variations in diameter and density on the statistics of aligned array carbon-nanotube field effect transistors , 2012 .

[123]  G. Ghibaudo,et al.  Review on high-k dielectrics reliability issues , 2005, IEEE Transactions on Device and Materials Reliability.

[124]  Zhen Yao,et al.  1/f noise in carbon nanotubes , 2001 .

[125]  S. Vitusevich,et al.  Low-Frequency Noise Spectroscopy at Nanoscale: Carbon Nanotube Materials and Devices , 2011 .

[126]  Kang L. Wang,et al.  Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes. , 2011, ACS nano.

[127]  Jing Guo,et al.  Performance Assessment of Subpercolating Nanobundle Network Thin-Film Transistors by an Analytical Model , 2007, IEEE Transactions on Electron Devices.

[128]  Brian J Landi,et al.  Radiation Effects in Single-Walled Carbon Nanotube Thin-Film-Transistors , 2010, IEEE Transactions on Nuclear Science.

[129]  Paul L. McEuen,et al.  High Performance Electrolyte Gated Carbon Nanotube Transistors , 2002 .

[130]  N. Pimparkar,et al.  A “Bottom-Up” Redefinition for Mobility and the Effect of Poor Tube–Tube Contact on the Performance of CNT Nanonet Thin-Film Transistors , 2008, IEEE Electron Device Letters.

[131]  J. Maldonado,et al.  Generation and annealing of defects in silicon dioxide , 1987 .

[132]  John A. Rogers,et al.  Highly Bendable, Transparent Thin‐Film Transistors That Use Carbon‐Nanotube‐Based Conductors and Semiconductors with Elastomeric Dielectrics , 2006 .

[133]  Paul E Kladitis,et al.  High-performance, lightweight coaxial cable from carbon nanotube conductors. , 2012, ACS applied materials & interfaces.

[134]  M. Shur,et al.  Understanding noise measurements in MOSFETs: the role of traps structural relaxation , 2010, 2010 IEEE International Reliability Physics Symposium.

[135]  M. J. Kirton,et al.  Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/ƒ) noise , 1989 .

[136]  M. Dresselhaus,et al.  Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly , 2003, Science.

[137]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[138]  Supriyo Datta,et al.  Metal–insulator–semiconductor electrostatics of carbon nanotubes , 2002 .

[139]  J. Rogers,et al.  Ultrathin Films of Single‐Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects , 2009 .

[140]  Jan G. Korvink,et al.  Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials , 2010 .

[141]  H. Dai,et al.  Selective Etching of Metallic Carbon Nanotubes by Gas-Phase Reaction , 2006, Science.

[142]  H. Dai,et al.  Modulated chemical doping of individual carbon nanotubes. , 2000, Science.

[143]  Ryan L. Spray,et al.  Adsorption of NH3 and NO2 on single-walled carbon nanotubes , 2004 .

[144]  A. Bartolomeo,et al.  Electrical properties and memory effects of field-effect transistors from networks of single- and double-walled carbon nanotubes , 2010, Nanotechnology.

[145]  Improve variability in carbon nanotube FETs by scaling , 2010, 68th Device Research Conference.

[146]  E. Snow,et al.  1∕f noise in single-walled carbon nanotube devices , 2004 .

[147]  E. Snow,et al.  Role of defects in single-walled carbon nanotube chemical sensors. , 2006, Nano letters.

[148]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[149]  Ophir Vermesh,et al.  Hysteresis caused by water molecules in carbon nanotube field-effect transistors , 2003 .

[150]  H. Klauk,et al.  High-performance carbon nanotube field effect transistors with a thin gate dielectric based on a self-assembled monolayer. , 2007, Nano letters.

[151]  SEMICONDUCTOR ELECTROCHEMISTRY , 2011 .

[152]  S. Messenger,et al.  Ion irradiation of electronic-type-separated single wall carbon nanotubes: A model for radiation effects in nanostructured carbon , 2012 .

[153]  J. Rogers,et al.  Intrinsic Performance Variability in Aligned Array CNFETs , 2011, IEEE Transactions on Nanotechnology.

[154]  P. Ye,et al.  Atomic layer deposited Al 2 O 3 for gate dielectric and passivation layer of single-walled carbon nanotube transistors , 2007 .

[155]  L. Skuja Optically active oxygen-deficiency-related centers in amorphous silicon dioxide , 1998 .

[156]  G. D. Nessim,et al.  Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. , 2010, Nanoscale.

[157]  Jean-Christophe Charlier,et al.  Electronic and transport properties of nanotubes , 2007 .

[158]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[159]  D. Schroder,et al.  Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing , 2003 .

[160]  K. Otsuga,et al.  Random Telegraph Signal in Flash Memory: Its Impact on Scaling of Multilevel Flash Memory Beyond the 90-nm Node , 2007, IEEE Journal of Solid-State Circuits.

[161]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[162]  Chen Feng,et al.  Flexible, Stretchable, Transparent Conducting Films Made from Superaligned Carbon Nanotubes , 2010 .