Self-Optimizing Decision-Making in Production Control

This paper deals with the concept for self-optimizing decision-making in production planning and control. The concept is based on a value stream that provides real-time production data. This data enables a qualified decision regarding production planning and control. Practice has shown that production systems with a high production process complexity—such as job shop production with low volume production—are difficult to control automatically. Therefore, employees have an important role to play but need to be supported regarding their decision-making. The goal is to highlight relevant decisions and put them into the correct context. An unconventional and interactive illustration that abandons classic numerical key performance indicators helps to derive the correct decisions. Varying levels of detail regarding the depicted data allow the user to “zoom” in or out of the state of his production system. By support of simulation and visualization tools, the aim of this paper is to present a concept for self-optimizing decision-making in production control in order to help user making the right decision.

[1]  Peter Sackett,et al.  DATA VISUALIZATION IN MANUFACTURING DECISION MAKING , 2003 .

[2]  Minoru Tanaka,et al.  Shifting bottleneck detection , 2002, Proceedings of the Winter Simulation Conference.

[3]  Robert Schmitt,et al.  Selbstoptimierende Produktionssysteme , 2007 .

[4]  Bernd Scholz-Reiter,et al.  Selbststeuerung logistischer Prozesse mit Agentensystemen , 2006 .

[5]  Dietger Hahn,et al.  Begriff und Ziele der Produktionswirtschaft , 1999 .

[6]  Günther Schuh,et al.  Design for Changeability , 2009 .

[7]  Ursula Frank,et al.  Specification technique for the description of self-optimizing mechatronic systems , 2009 .

[8]  T. Nakata,et al.  Dynamic bottleneck control in wide variety production factory , 1999 .

[9]  S. Jeschke,et al.  Integrative Production Technology for High-wage Countries , 2012 .

[10]  Paul Valckenaers,et al.  Holonic Manufacturing Execution Systems , 2005 .

[11]  Hans-Peter Wiendahl Betriebsorganisation für Ingenieure , 2009 .

[12]  R McGill,et al.  Graphical Perception and Graphical Methods for Analyzing Scientific Data , 1985, Science.

[13]  Hans-Peter Wiendahl,et al.  Load-Oriented Manufacturing Control , 1994 .

[14]  B. Schwartz The Paradox of Choice: Why More Is Less , 2004 .

[15]  Gunther Reinhart,et al.  A holistic approach for the cognitive control of production systems , 2010, Adv. Eng. Informatics.

[16]  Hoda A. ElMaraghy,et al.  Changeable and reconfigurable manufacturing systems , 2009 .

[17]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[18]  Günther Schuh,et al.  Produktionsplanung und -steuerung , 2006 .

[19]  W. H. M. Zijm,et al.  Towards intelligent manufacturing planning and control systems , 2000, OR Spectr..

[20]  P. J. Sackett,et al.  A review of data visualization: opportunities in manufacturing sequence management , 2006, Int. J. Comput. Integr. Manuf..

[21]  Heidrun Schumann,et al.  Visualisierung - Grundlagen und allgemeine Methoden , 2000 .

[22]  Jeff Cox,et al.  The goal : excellence in manufacturing , 1984 .

[23]  Günther Schuh,et al.  Shifting Bottlenecks in Production Control , 2012 .