Moving particle finite element method with superconvergence: Nodal integration formulation and applications

Abstract A new approach of moving particle finite element method has been developed which is capable to gain a global superconvergence through solving particle kernel function to satisfy high order consistencies. The nodal-based moving particle finite element method, inconjunction with the proposed superconvergence approach, provides an optimized combination in numerical accuracy and computation efficiency. The three-dimensional engineering scale simulations demonstrate that this scheme is robust and capable to handle high-speed penetration and dynamic crack propagation with intersonic and supersonic speeds.

[1]  Sivakumar Kulasegaram,et al.  Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations , 2000 .

[2]  Satya N. Atluri,et al.  New concepts in meshless methods , 2000 .

[3]  L. Libersky,et al.  Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .

[4]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[5]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[6]  K. Bathe,et al.  The method of finite spheres with improved numerical integration , 2001 .

[7]  Ares J. Rosakis,et al.  How fast is rupture during an earthquake? New insights from the 1999 Turkey Earthquakes , 2001 .

[8]  Su Hao,et al.  Computer implementation of damage models by finite element and meshfree methods , 2000 .

[9]  A. Rosakis,et al.  Cracks faster than the shear wave speed , 1999, Science.

[10]  Ted Belytschko,et al.  ON THE COMPLETENESS OF MESHFREE PARTICLE METHODS , 1998 .

[11]  O. C. Zienkiewicz,et al.  A new cloud-based hp finite element method , 1998 .

[12]  Antonio Huerta,et al.  Enrichment and coupling of the finite element and meshless methods , 2000 .

[13]  J. Oden Finite Elements of Nonlinear Continua , 1971 .

[14]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[15]  Ted Belytschko,et al.  Numerical integration of the Galerkin weak form in meshfree methods , 1999 .

[16]  Genki Yagawa,et al.  Node‐by‐node parallel finite elements: a virtually meshless method , 2004 .

[17]  Mark O. Neal,et al.  Contact‐impact by the pinball algorithm with penalty and Lagrangian methods , 1991 .

[18]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[19]  L. B. Freund,et al.  The stability of a rapid mode II shear crack with finite cohesive traction , 1979 .

[20]  Wing Kam Liu,et al.  Moving particle finite element method , 2002 .

[21]  Wing Kam Liu,et al.  Moving particle finite element method with global smoothness , 2004 .

[22]  J. Z. Zhu,et al.  The finite element method , 1977 .

[23]  Huafeng Liu,et al.  Meshfree Particle Methods , 2004 .

[24]  Gregory J. Wagner,et al.  Application of essential boundary conditions in mesh-free methods: a corrected collocation method , 2000 .

[25]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[26]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[27]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[28]  I. Babuska,et al.  Acta Numerica 2003: Survey of meshless and generalized finite element methods: A unified approach , 2003 .

[29]  Jiun-Shyan Chen,et al.  Non‐linear version of stabilized conforming nodal integration for Galerkin mesh‐free methods , 2002 .

[30]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[31]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[32]  Ivo Babuška,et al.  Computer‐based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations , 1996 .

[33]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[34]  Ares J. Rosakis,et al.  Intersonic shear cracks and fault ruptures , 2002 .

[35]  T. Hughes,et al.  Finite rotation effects in numerical integration of rate constitutive equations arising in large‐deformation analysis , 1980 .

[36]  Ares J. Rosakis,et al.  Modeling and simulation of intersonic crack growth , 2004 .

[37]  L. B. Freund,et al.  The mechanics of dynamic shear crack propagation , 1979 .

[38]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .