Automatic generation of consensus ground truth for the comparison of edge detection techniques

Two new methods are proposed to automatically generate consensus ground truth for real images: Minimean and Minimax methods. These methods and a version of the Yitzhaky and Peli method have been used to provide ground truth for the comparison of edge detection techniques. The developed experiments have revealed that the Minimean consensus method is suitable for the comparison of edge detectors because its results are equivalent to those obtained with artificial or manual ground truth.

[1]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Konstantinos N. Plataniotis,et al.  Comprehensive Analysis of Edge Detection in Color Image Processing , 1999 .

[3]  Dana H. Ballard,et al.  Computer Vision , 1982 .

[4]  Geoffrey Egnal,et al.  A stereo confidence metric using single view imagery with comparison to five alternative approaches , 2004, Image Vis. Comput..

[5]  Keiichi Abe,et al.  Comparison of Methods for Detecting Corner Points from Digital Curves , 1995, GREC.

[6]  Y. J. Zhang,et al.  A survey on evaluation methods for image segmentation , 1996, Pattern Recognit..

[7]  Jacob Scharcanski,et al.  Edge detection of color images using directional operators , 1997, IEEE Trans. Circuits Syst. Video Technol..

[8]  John M. Gauch,et al.  Comparison of three-color image segmentation algorithms in four color spaces , 1992, Other Conferences.

[9]  Akira Shiozaki,et al.  Edge extraction using entropy operator , 1986, Comput. Vis. Graph. Image Process..

[10]  K. Plataniotis,et al.  Color Image Processing and Applications , 2000 .

[11]  Matti Pietikäinen,et al.  Edge Information in Color Images Based on Histograms of Differences , 1985 .

[12]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[13]  Panos E. Trahanias,et al.  Vector order statistics operators as color edge detectors , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[14]  Robert M. Haralick,et al.  Performance Characterization in Computer Vision , 1993, BMVC.

[15]  Arnold W. M. Smeulders,et al.  The Amsterdam Library of Object Images , 2004, International Journal of Computer Vision.

[16]  H. Scheffé The Analysis of Variance , 1960 .

[17]  Dmitry B. Goldgof,et al.  A methodology for evaluating range image segmentation techniques , 1994, WACV.

[18]  Paul L. Rosin,et al.  Evaluation of global image thresholding for change detection , 2003, Pattern Recognit. Lett..

[19]  Sudeep Sarkar,et al.  Comparison of Edge Detectors: A Methodology and Initial Study , 1998, Comput. Vis. Image Underst..

[20]  A. Koschan A Comparative Study On Color Edge Detection , 1995 .

[21]  T. Huntsberger,et al.  Comparing color edge detection and segmentation methods , 1989, Proceedings. IEEE Energy and Information Technologies in the Southeast'.

[22]  Kevin W. Bowyer,et al.  Empirical evaluation techniques in computer vision , 1998 .

[23]  Yu Jin Zhang,et al.  Evaluation and comparison of different segmentation algorithms , 1997, Pattern Recognit. Lett..

[24]  Yitzhak Yitzhaky,et al.  A Method for Objective Edge Detection Evaluation and Detector Parameter Selection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Shree K. Nayar,et al.  Global measures of coherence for edge detector evaluation , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[26]  Hsien-Che Lee,et al.  Detecting boundaries in a vector field , 1991, IEEE Trans. Signal Process..

[27]  Angus M. Brown A new software for carrying out one-way ANOVA post hoc tests , 2005, Comput. Methods Programs Biomed..

[28]  Rama Chellappa,et al.  Edge Detection and Linear Feature Extraction Using a 2-D Random Field Model , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[30]  H. Scheffé A METHOD FOR JUDGING ALL CONTRASTS IN THE ANALYSIS OF VARIANCE , 1953 .

[31]  I.E. Abdou,et al.  Quantitative design and evaluation of enhancement/thresholding edge detectors , 1979, Proceedings of the IEEE.

[32]  Henrik I. Christensen,et al.  EditorialPerformance characteristics of vision algorithms , 1997, Machine Vision and Applications.

[33]  Nicolai Petkov,et al.  Contour detection based on nonclassical receptive field inhibition , 2003, IEEE Trans. Image Process..

[34]  Francisco José Madrid-Cuevas,et al.  Evaluation of global thresholding techniques in non-contextual edge detection , 2005, Pattern Recognit. Lett..

[35]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Francisco José Madrid-Cuevas,et al.  Characterization of empirical discrepancy evaluation measures , 2004, Pattern Recognit. Lett..

[37]  Sudeep Sarkar,et al.  Comparison of edge detectors: a methodology and initial study , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[38]  Dov Dori,et al.  A protocol for performance evaluation of line detection algorithms , 1997, Machine Vision and Applications.

[39]  Sean Dougherty,et al.  Edge Detector Evaluation Using Empirical ROC Curves , 2001, Comput. Vis. Image Underst..

[40]  Panos E. Trahanias,et al.  Color edge detection using vector order statistics , 1993, IEEE Trans. Image Process..