AlN precipitation during steel solidification using CA model

[1]  Y. Shin,et al.  A novel 3D cellular automata-phase field model for computationally efficient dendrite evolution during bulk solidification , 2021 .

[2]  Lei Cui,et al.  A CA-LBM model for simulating dendrite growth with forced convection , 2021, Journal of Iron and Steel Research International.

[3]  Youn‐Bae Kang,et al.  Interaction of Si and Al and Its Effect on AlN Precipitation in Ferritic Fe at 1373 K to 1473 K , 2021, Metallurgical and Materials Transactions B.

[4]  Yuansheng Yang,et al.  An integrated microporosity model of 3D X-ray micro-tomography and directional solidification simulations for Ni-based single crystal superalloys , 2021 .

[5]  A. Karma,et al.  Dendritic Needle Network Modeling of the Columnar-to-Equiaxed Transition. Part II: Three Dimensional Formulation, Implementation and Comparison with Experiments , 2021, Acta Materialia.

[6]  M. Nabeel,et al.  Influence of Al and N Content and Cooling Rate on the Characteristics of Complex MnS Inclusions in AHSS , 2020, Crystals.

[7]  A. Zhang,et al.  Phase-field-lattice Boltzmann simulation of dendrite motion using an immersed boundary method , 2020 .

[8]  O. D. Organizzazione,et al.  Modell , 2020, Werkzeuge für Ideen.

[9]  Jianguo Li,et al.  Simulation of dendritic remelting and fragmentation using coupled cellular automaton and Eulerian multiphase model , 2020 .

[10]  G. Reinhart,et al.  Three-dimensional cellular automaton modeling of silicon crystallization with grains in twin relationships , 2020, Acta Materialia.

[11]  Xiaohan Gao,et al.  An improved cellular automata model for TiN inclusion precipitation , 2020, Materials Research Express.

[12]  Hui Fang,et al.  Competitive dendrite growth during directional solidification of a transparent alloy: Modeling and experiment , 2020, The European physical journal. E, Soft matter.

[13]  A. Mclean,et al.  Effect of Cooling Rate on AlN Precipitation in FeCrAl Stainless Steel During Solidification , 2019, Metals.

[14]  Cong Yang,et al.  Phase-field–lattice Boltzmann simulation of dendrite growth under natural convection in multicomponent superalloy solidification , 2019, Rare Metals.

[15]  Miao‐yong Zhu,et al.  Recalescence and Segregation Phenomena During Equiaxed Dendritic Solidification of Fe-C Alloy , 2019, Metallurgical and Materials Transactions B.

[16]  Xiaohan Gao,et al.  Cross-scale simulation for MnS precipitation of Fe-C alloy with cooling rate variation , 2019, Materials Research Express.

[17]  Xin Li,et al.  Precipitation Behavior of AlN in High-Magnetic-Induction Grain-Oriented Silicon Steel Slab , 2019, JOM.

[18]  Xiaohan Gao,et al.  Cross-Scale Modeling of MnS Precipitation for Steel Solidification , 2018, Metals.

[19]  S. Luo,et al.  Development of a CA-FVM Model with Weakened Mesh Anisotropy and Application to Fe–C Alloy , 2016 .

[20]  Jinling Liu,et al.  Microstructure and Lattice Parameters of AlN Particle-Reinforced Magnesium Matrix Composites Fabricated by Powder Metallurgy , 2015, Acta Metallurgica Sinica (English Letters).

[21]  Qingyan Xu,et al.  Cellular automaton simulation of three-dimensional dendrite growth in Al–7Si–Mg ternary aluminum alloys , 2015 .

[22]  Qingyan Xu,et al.  A Modified Cellular Automaton Model for the Quantitative Prediction of Equiaxed and Columnar Dendritic Growth , 2014 .

[23]  D. Raabe,et al.  Modelling of dendritic growth during alloy solidification under natural convection , 2014 .

[24]  Xiao-ming Zhang,et al.  AlN precipitates and microstructure in non-oriented electrical steels produced by twin-roll casting process , 2013, Acta Metallurgica Sinica (English Letters).

[25]  C. Bernhard,et al.  Identification of Defect Prone Peritectic Steel Grades by Analyzing High-Temperature Phase Transformations , 2013, Metallurgical and Materials Transactions A.

[26]  Seppo Louhenkilpi,et al.  Numerical Simulation of Solidification Structure of High Carbon Steel in Continuous Casting Using Cellular Automaton Method , 2012 .

[27]  B. Nestler,et al.  Comparison of phase-field and cellular automaton models for dendritic solidification in Al–Cu alloy , 2012 .

[28]  Dongke Sun,et al.  Numerical Simulation of Microstructure Evolution During Alloy Solidification by Using Cellular Automaton Method , 2010 .

[29]  D. Raabe,et al.  Lattice Boltzmann modeling of dendritic growth in a forced melt convection , 2009 .

[30]  D. Stefanescu,et al.  A quantitative dendrite growth model and analysis of stability concepts , 2004 .

[31]  Ryo Inoue,et al.  Thermodynamics on Control of Inclusions Composition in Ultraclean Steels , 1996 .

[32]  C. Gandin,et al.  A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes , 1994 .

[33]  A. Götte,et al.  Metall , 1897 .

[34]  Zhi Xie,et al.  A fast method based on GPU for solidification structure simulation of continuous casting billets , 2021, J. Comput. Sci..

[35]  Dongke Sun,et al.  Microporosity formation and dendrite growth during solidification of aluminum alloys: Modeling and experiment , 2020 .

[36]  Miaoyong Zhu,et al.  Cellular automaton modeling of dendritic growth of Fe-C binary alloy with thermosolutal convection , 2018 .

[37]  S. Pan,et al.  A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth , 2010 .