A short history of stochastic integration and mathematical finance the early years, 1880-1970

The history of stochastic integration and the modelling of risky asset prices both begin with Brownian motion, so let us begin there too. The earliest attempts to model Brownian motion mathematically can be traced to three sources, each of which knew nothing about the others: the first was that of T. N. Thiele of Copenhagen, who effectively created a model of Brownian motion while studying time series in 1880 [80]. 1 ; the second was that of L. Bachelier of Paris, who created a model of Brownian motion while deriving the dynamic behavior of the Paris stock market, in 1900 (see, [1, 2, 11]); and the third was that of A. Einstein, who proposed a model of the motion of small particles suspended in a liquid, in an attempt to convince other physicists of the molecular nature of matter, in 1905 [21](See [63] for a discussion of Einstein’s model and his motivations.) Of these three models, those of Thiele and Bachelier had little impact for a long time, while that of Einstein was immediately influential. We go into a little detail about what happened to Bachelier, since he is now seen by many as the founder of modern Mathematical Finance. Ignorant of the work of Thiele (which was little appreciated in its day) and preceding the work of Einstein, Bachelier attempted to model the market noise of the Paris Bourse. Exploiting the ideas of the Central Limit Theorem, and realizing that market noise should be without memory, he reasoned that increments of stock prices should be independent and normally distributed. He combined his reasoning with the Markov property and semigroups, and connected Brownian motion with the heat equation, using that the Gaussian kernel is the fundamental solution to the heat equation. He was able to define other processes related to Brownian motion, such as the maximum change during a time interval (for one dimensional Brownian motion), by using random walks and letting the time steps go to zero, and by then taking

[1]  Anja Sturm,et al.  Stochastic Integration and Differential Equations. Second Edition. , 2005 .

[2]  P. Protter A new prize in honor of Kiyosi Itô , 2003 .

[3]  Marc Yor,et al.  Comments on the life and mathematical legacy of Wolfgang Doeblin , 2002, Finance Stochastics.

[4]  P. Samuelson Modern Finance Theory Within One Lifetime , 2002 .

[5]  P. A. Meyer,et al.  Un Cours sur les Intégrales Stochastiques , 2002 .

[6]  M. Émery,et al.  Séminaire de probabilités 1967-1980 : a selection in martingale theory , 2002 .

[7]  P. Meyer Intégrales Stochastiques I , 2002 .

[8]  Robert Buff Continuous Time Finance , 2002 .

[9]  R. C. Merton,et al.  Future Possibilities in Finance Theory and Finance Practice , 2002 .

[10]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .

[11]  Y. Kabanov,et al.  Louis Bachelier on the Centenary of Théorie de la Spéculation , 2000 .

[12]  P. Meyer Les Processus Stochastiques de 1950 à Nos Jours , 2000 .

[13]  F. Eugene FAMA, . Market efficiency, long-term returns, and behavioral finance, Journal of Financial Economics . , 1998 .

[14]  E. Fama Market Efficiency, Long-Term Returns, and Behavioral Finance , 1997 .

[15]  Joseph L. Doob,et al.  THE DEVELOPMENT OF RIGOR IN MATHEMATICAL PROBABILITY (1900-1950) , 1996 .

[16]  T. W. Körner,et al.  The Pleasures of Counting: Subtle is the Lord , 1996 .

[17]  W. Kendall STOCHASTIC CALCULUS IN MANIFOLDS (with an Appendix by P. A. Meyer) , 1991 .

[18]  Peter L. Bernstein,et al.  Capital Ideas: The Improbable Origins of Modern Wall Street , 1991 .

[19]  P. Protter Stochastic integration and differential equations , 1990 .

[20]  G. Winkler,et al.  The Stochastic Integral , 1990 .

[21]  M. Émery Stochastic Calculus in Manifolds , 1989 .

[22]  G. Siegel,et al.  Analytic methods of probability theory , 1985 .

[23]  Ruth J. Williams,et al.  Introduction to Stochastic Integration , 1994 .

[24]  J. Polkinghorne The science and life of albert einstein , 1983 .

[25]  Abraham Pais,et al.  ‘Subtle Is the Lord …’: The Science and the Life of Albert Einstein by Abraham Pais (review) , 1984 .

[26]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[27]  A. Hald,et al.  T. N. Thiele's Contributions to Statistics' , 1981 .

[28]  E. Lenglart,et al.  Transformation des martingales locales par changement absolument continu de probabilities , 1977 .

[29]  C. Doléans-Dade,et al.  Equations differentielles stochastiques , 1977 .

[30]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[31]  J. H. Schuppen,et al.  Transformation of Local Martingales Under a Change of Law , 1974 .

[32]  J. Jacod,et al.  Systèmes de lévy des processus de markov , 1973 .

[33]  B. Malkiel A Random Walk Down Wall Street , 1973 .

[34]  P. Samuelson Mathematics of Speculative Price , 1973 .

[35]  C. Doléans-Dade,et al.  Intégrales stochastiques par rapport aux martingales locales , 1970 .

[36]  K. Kojima Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. , 1969 .

[37]  David Q. Mayne,et al.  Conditional Markov Processes and their application to the Theory of Optimal Control , 1969, Comput. J..

[38]  Paul A. Samuelson,et al.  A Complete Model of Warrant Pricing that Maximizes Utility , 1969 .

[39]  H. McKean,et al.  Diffusion processes and their sample paths , 1996 .

[40]  R. L. Stratonovich Conditional Markov Processes and their Application to the Theory of Optimal Control , 1968 .

[41]  H. Kunita,et al.  On Square Integrable Martingales , 1967, Nagoya Mathematical Journal.

[42]  A. Skorokhod Homogeneous Markov Processes without Discontinuities of the Second Kind , 1967 .

[43]  A. Skorokhod On the Local Structure of Continuous Markov Processes , 1966 .

[44]  L. Dubins,et al.  ON CONTINUOUS MARTINGALES. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[45]  F. Eugene FAMA, . The Behavior of Stock-Market Prices, Journal of Business, , . , 1965 .

[46]  K. E. Dambis,et al.  On the Decomposition of Continuous Submartingales , 1965 .

[47]  Shinzo Watanabe,et al.  On a class of additive functionals of Markov processes , 1965 .

[48]  Kiyosi Itô,et al.  Transformation of Markov processes by multiplicative functionals , 1965 .

[49]  Shinzo Watanabe On discontinuous additive functionals and Lévy measures of a Markov process , 1964 .

[50]  W. Fleming,et al.  Theory of Markov Processes , 1963 .

[51]  Donald L. Fisk,et al.  QUASI-MARTINGALES AND STOCHASTIC INTEGRALS , 1963 .

[52]  P. Meyer Decomposition of supermartingales: The uniqueness theorem , 1963 .

[53]  A. Skorokhod On Homogeneous Continuous Markov Processes that are Martingales , 1963 .

[54]  Guy Johnson,et al.  Class $D$ supermartingales , 1963 .

[55]  D. E. Brown,et al.  Theory of Markov Processes. , 1962 .

[56]  P. Meyer,et al.  A decomposition theorem for supermartingales , 1962 .

[57]  I. V. Girsanov On Transforming a Certain Class of Stochastic Processes by Absolutely Continuous Substitution of Measures , 1960 .

[58]  M. Osborne Brownian Motion in the Stock Market , 1959 .

[59]  Merton H. Miller The Cost of Capital, Corporation Finance and the Theory of Investment , 1958 .

[60]  G. A. Hunt Markoff processes and potentials II , 1957 .

[61]  G. A. Hunt MARKOFF PROCESSES AND POTENTIALS. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Kiyosi Itô On a Formula Concerning Stochastic Differentials , 1951, Nagoya Mathematical Journal.

[63]  Kiyosi Itô Multiple Wiener Integral , 1951 .

[64]  The transformation of Wiener integrals by nonlinear transformations , 1949 .

[65]  Jean-Luc Ville Étude critique de la notion de collectif , 1939 .

[66]  Willy Feller Zur Theorie der stochastischen Prozesse , 1937 .

[67]  A. Kolmogoroff Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung , 1931 .

[68]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .

[69]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .